Солнечные вспышки
Вспышки на Солнце представляют собой взрывы, вследствие которых выделяется энергетический поток в объёме около 160 млрд мегатонн. Они затрагивают абсолютно все слои атмосферы нашей звезды – фото-, хромосферу и корону. Что это за явление, почему оно образуется, и к каким последствиям оно приводит, будет рассмотрено в статье.
Общее описание
Солнечные вспышки протекают в нескольких фазах, основная из них – импульсная. Её длительность, как правило, составляет пару минут, а объём энергии, которая высвобождается за весь этот отрезок времени, равен миллиардам мегатонн. Энергетический поток, как правило, определяется в заметном диапазоне волн.
В 1970 г. было предложено использование специальной классификации взрывов у солнечной поверхности. Внедрил её Д. Бейкер. Она основывается на проведении измерений амплитуды всплеска в диапазоне от 0,5 до 10 кэВ. На основании данной градации солнечные вспышки получают балл в виде буквы, за которой следует индекс. Он определяется величиной пика интенсивности излучения.
Индекс является своего рода уточнением параметра интенсивности вспышки и находится в диапазоне от 1,0 до 9,9. Для букв «X» этот показатель увеличивается. Фиксирование излучения Солнца стало доступным только после того, как был произведён запуск «Спутника-2», и было использовано специальное оборудование. Поэтому официальные уточнённые данные об этих показателях до 1957 г. отсутствуют.
Классификация солнечных вспышек
Причины появления
Вспышки на Солнце появляются непросто так, а по определённым причинам. Как и любая другая звезда, наше светило – огромный шар, состоящий из газа. Его вращение происходит вокруг собственной оси, скорость вращения разных частей неодинакова: на полюсах явления протекают медленнее, на экваторе – быстрее. В результате происходит закручивание магнитного поля с плазмой, а также его усиление, что приводит к его подъёму на поверхность. В этих зонах в связи с повышением активности образуются вспышки на Солнце.
Говоря простыми словами, энергия, выделяемая в процессе вращения светила, может становиться магнитной. А в тех областях, где ее выделяется слишком много, появляются взрывы. Этот процесс можно сопоставить с принципом работы электрической лампочки, подключаемой к сети. В случае чрезмерного повышения напряжения происходит её перегорание.
Прогнозы учёных
Солнечные вспышки могут быть запросто предсказаны учёными. Ведь они работают в данном направлении в течение нескольких десятилетий в попытках объяснить явление и спрогнозировать очередной взрыв. Практика показывает, что самые малоприятные проявления солнечной активности настигают человечество неожиданно. Связано это, в первую очередь, с тем, что сделать более или менее точные прогнозы можно только вследствие оценки магнитных полей, которые непостоянны и нестабильны.
Если принимать во внимание уровень негативного влияния и опасность, которую несут в себе солнечные вспышки, можно сделать вывод о важности их прогнозирования. Так что учёные постоянно находятся в поиске действенных методик прогнозирования. В течение длительного времени синоптики применяли следующие способы:
- казуальная технология предполагает предвидение предстоящей вспышки путём моделирования, требуется тщательное изучение физических нюансов;
- синоптическая техника подразумевает проведение комплексной оценки поведения солнца, предшествующего взрыву.
Учёные давно пришли к выводу о взаимосвязи между корональным происхождением и магнитной природой вспышек. Поэтому в целях создания более качественных прогнозов придётся объединять обе методики.
Влияние и степень опасности
Солнечные вспышки на сегодняшний день играют прикладную роль в ходе исследования поверхности звезды, а именно – её элементарного состава. Они представляют собой не что иное, как возбудитель излучения для спектрометров, которые присутствуют на бортах суден, отправляемых в космос.
Основными факторами, влияющими на процесс образования ионосферы, является УФ излучение и рентгеновские лучи. Они приводят к значительным изменениям свойств верхней атмосферы и повышению ее плотности. Это значит, что плотность становится выше, а высота движения спутников искусственного происхождения – моментально снижается.
Плазменные облака, выброс которых происходит в процессе этих взрывов, влекут за собой появление геомагнитных бурь. Они, в свою очередь, оказывают негативное влияние на технические приспособления и самочувствие людей. Наряду с этим вследствие вспышек происходит полярное сияние. Изучением данного вопроса занимаются гелиобиологи.
Геомагнитные бури
Вспышки на Солнце – причина бурь. Они представляют собой возмущение поля, продолжающееся от нескольких часов до пары дней. Это – одно из существенных направлений геомагнитной активности. Они спровоцированы поступлением в окрестности планеты Земля возмущённых потоков, а также их взаимосвязью с магнитосферой.
Частоты, с которой появляются такие бури, коррелирует с 11-летним циклом активности звезде. Если средняя частота равна 30 бурь в год, их количество может равняться 1-2 явления поблизости от минимума и 50 – от максимума. Это говорит о том, что солнечные вспышки действительно оказывают влияние на окружающие обстоятельства и требуют детального прогнозирования.
Особенности классификации
Как уже отмечалось, вспышки на Солнце приводят к появлению магнитных бурь, которые, в свою очередь, делятся на разновидности (по индексу).
- К-индекс. Он представляет собой отклонение магнитного поля от нормального значения на протяжении 3 часов. Такой параметр ввёл Ю. Бартельс в 1938 г. Он представлен в значениях, находящихся в диапазоне 0-9.
- Кр-индекс. Он является планетарным и определяется как средний показатель К-индексов, которые определяются в 13 обсерваториях, находящихся между 44 и 60 градусами с. ш. и ю. ш. Диапазон аналогичный.
- G-индекс. Система оценки силы, которая была выведена NOAA в 1999 г. Показатель даёт характеристику интенсивности шторма в отношении человечества представителей фауны, средства электротехники и т. д. Градация по уровням – от G1 до G5 по мере возрастания силы.
Все эти параметры позволяют изучать солнечные вспышки максимально подробно и делать соответствующие выводы об их особенностях.
Роль в зарождении жизни
Вспышки на Солнце играют важную роль в зарождении жизни на Земле. По крайней мере, такую гипотезу выдвигают многие современные учёные. Дело в том, что взрывы поспособствовали разогреву нашей планеты. В итоге выбрасываемый энергетический поток привел к тому, что строение простых молекул значительно усложнилось.
Порядка 4 млрд лет тому назад Земле доставалось только 70% солнечной энергии в сравнении с тем, что есть в настоящее время. Это говорит о том, что планета должна была представлять собой шар изо льда. Тем не менее, геологические свидетельства утверждают, что она всегда была тёплой и содержала огромные массы жидкой воды. По-научному данный феномен называется «Парадокс слабого молодого Солнца».
Звезда производит вспышки, а также выбросы масс, однако они не настолько интенсивны. Планета имеет внушительное магнитное поле, которое обеспечивает защиту от большей части энергии. Расчёты экспертов показывают, что элементы космической погоды направлялись вниз вдоль линий магнитного поля, а затем врезались в молекулы азота, находившиеся в атмосфере, что приводило к изменению химического состава и формированию условий для жизни. Наряду с этим чрезмерно большое количество энергии, которую дают солнечные вспышки, может оказаться губительным.
Таким образом, рассматриваемое явление, несмотря на относительную изученность, для учёных является загадкой и требует более тщательного исследования.
Источник
Атмосфера Солнца: Фотосфера, Хромосфера и Солнечная корона
Из чего состоит атмосфера нашей звезды, чем фотосфера отличается от хромосферы и почему у Солнца есть корона?
Земная атмосфера – это воздух, которым мы дышим, привычная нам газовая оболочка Земли. Такие оболочки есть и у других планет. Звезды целиком состоят из газа, но их внешние слои также именуют атмосферой. При этом внешними считаются те слои, откуда хотя бы часть излучения может беспрепятственно, не поглощаясь вышележащими слоями, уйти в окружающее пространство.
Фотосфера – атмосфера Солнца
Фотосфера – атмосфера Солнца начинается на 200-300 км глубже видимого края солнечного края. Эти самые глубокие слои атмосферы называют фотосферой. Поскольку их толщина составляет не более одной трехтысячной доли солнечного радиуса, фотосферу иногда условно называют поверхностью Солнца.
Фотосфера – солнечная атмосфера. Именно её мы, собственно, и видим с Земли
Плотность газов в фотосфере примерно такая же, как в земной стратосфере, и в сотни раз меньше, чем у поверхности Земли. Температура фотосферы уменьшается от 8000 К на глубине 300 км до 4000 К в самых верхних слоях.
Солнечная поверхность, наблюдаемая в телескоп в видимом диапазоне длин волн, представляется совокупностью ярких площадок, окружённых относительно тёмными тонкими промежутками. Это – солнечные гранулы, их размеры различны и составляют в среднем 700 км, “время жизни” (появление и угасание гранулы) примерно 8 мин. Гранулы разделяются тёмными промежутками шириной около 300 км.
Температура же того среднего слоя, излучение которого мы воспринимаем, около 6000 К. При таких условиях почти все молекулы газа распадаются на отдельные атомы. Лишь в самых верхних слоях фотосферы сохранятся относительно немного простейших молекул и радикалов типа H2, OH, CH.
Особую роль в солнечной атмосфере играет не встречающийся в земной природе отрицательный ион водорода, который представляет собой протон с двумя электронами. Это необычное соединение возникает в тонком внешнем, наиболее холодном слое фотосферы при “налипании” на нейтральные атомы водорода отрицательно заряженных свободных электронов, которые поставляются легко ионизуемыми атомами кальция, натрия, магния, железа и других металлов.
При возникновении отрицательные ионы водорода излучают большую часть видимого света. Этот же свет ионы жадно поглощают, из-за чего непрозрачность атмосферы с глубиной быстро растет. Поэтому видимый край Солнца и кажется нам очень резким.
Почти все наши знания о Солнце основаны на изучении его спектра – узенькой разноцветной полоски, имеющей ту же природу, что и радуга. Впервые, поставив призму на пути солнечного луча, такую полоску получил Ньютон и воскликнул: “Спектрум!” (лат. spectrum – “видение”). Позже в спектре Солнца заметили темные линии и сочли их границами цветов.
В телескоп с большим увеличением можно наблюдать тонкие детали фотосферы: вся она кажется усыпанной мелкими яркими зернышками – гранулами, разделенными сетью узких темных дорожек. Грануляция является результатом перемешивания всплывающих более теплых потоков газа и опускающихся более холодных.
Разность температур между ними в наружных слоях сравнительно невелика (200-300 К), но глубже, в конвективной зоне, она больше, и перемешивание происходит значительно интенсивнее. Конвекция во внешних слоях Солнца играет огромную роль, определяя общую структуру атмосферы. В конечном счете именно конвекция в результате сложного взаимодействия с солнечными магнитными полями является причиной всех многообразных проявлений солнечной активности. Магнитные поля участвуют во всех процессах на Солнце.
Временами в небольшой области солнечной атмосферы возникают концентрированные магнитные поля, в несколько тысяч раз более сильные, чем на Земле. Ионизованная плазма – хороший проводник, она не может перемещаться поперек линий магнитной индукции сильного магнитного поля. Поэтому в таких местах перемешивание и подъем горячих газов снизу тормозится, и возникает темная область – солнечное пятно. На фоне ослепительной фотосферы оно кажется совсем черным, хотя в действительности яркость его слабее только в десять.
С течением времени величина и форма пятен сильно меняются. Возникнув в виде едва заметной точки – поры, пятно постепенно увеличивает свои размеры до нескольких десятков тысяч километров. Крупные пятна, как правило, состоят из темной части (ядра) и менее темной – полутени, структура которой придает пятну вид вихря. Пятна бывают окружены более яркими участками фотосферы, называемыми факелами или факельными полями.
Фотосфера постепенно переходит в более разреженные внешние слои солнечной атмосферы – хромосферу и солнечную корону.
Хромосфера Солнца
Хромосфера Солнца (греч. “сфера цвета”) названа так за свою красновато-фиолетовую окраску. Она видна во время полных солнечных затмений как клочковатое яркое кольцо вокруг черного диска Луны, только что затмившего Солнце. Хромосфера весьма неоднородна и состоит в основном из продолговатых вытянутых язычков (спикул), придающих ей вид горящей травы.
Во время полного солнечно затмения, когда диск Солнца скрыт от наших глаз, мы видим хромосферу – тонкий яркий ореол по краям солнечного диска
Температура этих хромосферных струй в два-три раза выше, чем в фотосфере, а плотность в сотни тысяч раз меньше. Общая протяженность хромосферы 10-15 тыс. километров.
Рост температуры в хромосфере объясняется распространением волн и магнитных полей, проникающих в нее из конвективной зоны. Вещество нагревается примерно так же, как если бы это происходило в гигантской микроволновой печи. Скорости тепловых движений частиц возрастают, учащаются столкновения между ними, и атомы теряют свои внешние электроны: вещество становится горячей ионизованной плазмой. Эти же физические процессы поддерживают и необычайно высокую температуру самых внешних слоев солнечной атмосферы, которые расположены выше хромосферы.
Наиболее распространены “спокойные” протуберанцы, появление которых обычно связано с развитием группы пятен, но существуют они значительно дольше пятен (до 1 года). Непосредственно в зоне пятен наблюдаются после вспышек, протуберанцы солнечных пятен – потоки газа, втекающего из короны в зону пятен со скоростями в неск. десятков км/с. Другой вид протуберанцев связан с выбросами вещества вверх (обычно после вспышек) со скоростями 100-1000 км/с (быстрые эруптивные протуберанцы).
Над поверхностью Солнца можно наблюдать причудливой формы “фонтаны”, “облака”, “воронки”, “кусты”, “арки” и прочие ярко светящиеся образования из хромосферного вещества. Они бывают неподвижными или медленно изменяющимися, окруженными плавными изогнутыми струями, которые втекают в хромосферу или вытекают из нее, поднимаясь на десятки и сотни тысяч километров. Это самые грандиозные образования солнечной атмосферы – протуберанцы.
При наблюдении в красной спектральной линии, излучаемой атомами водорода, они кажутся на фоне солнечного диска темными, длинными и изогнутыми волокнами.
Протуберанцы имеют примерно ту же плотность и температуру, что и хромосфера. Но они находятся над ней и окружены более высокими, сильно разреженными верхними слоями солнечной атмосферы. Протуберанцы не падают в хромосферу потому, что их вещество поддерживается магнитными полями активных областей Солнца.
Впервые спектр протуберанца вне затмения наблюдали французский астроном Пьер Жансен и его английский коллега Джозеф Локьер в 1868 г. Щель спектроскопа располагают так, чтобы она пересекала край Солнца, и если вблизи него находится протуберанец, то можно заметить спектр его излучения.
Направляя щель на различные участки протуберанца или хромосферы, можно изучить их по частям. Спектр протуберанцев, как и хромосферы, состоит из ярких линий, главным образом водорода, гелия и кальция. Линии излучения других химических элементов тоже присутствуют, но они намного слабее.
Некоторые протуберанцы, пробыв долгое время без заметных изменений, внезапно как бы взрываются, и вещество их со скоростью в сотни километров в секунду выбрасывается в межпланетное пространство. Вид хромосферы также часто меняется, что указывает на непрерывное движение составляющих ее газов.
Иногда нечто похожее на взрывы происходит в очень небольших по размеру областях атмосферы Солнца. Это так называемые хромосферные вспышки (самые мощные взрывоподобные процессы, могут продолжаться всего несколько минут, но за это время выделяется энергия, которая иногда достигает 1025 Дж).
Они длятся обычно несколько десятков минут. Во время вспышек в спектральных линиях водорода, гелия, ионизованного кальция и некоторых других элементов свечение отдельного участка хромосферы внезапно увеличивается в десятки раз. Особенно сильно возрастает ультрафиолетовое и рентгеновское излучение: порой его мощность в несколько раз превышает общую мощность излучения Солнца в этой коротковолновой области спектра до вспышки.
Пятна, факелы, протуберанцы, хромосферные вспышки – все это проявления солнечной активности. С повышением активности число этих образований на Солнце становится больше.
Солнечная корона
Корона – в отличие от фотосферы и хромосферы самая внешняя часть атмосферы Солнца обладает огромной протяженностью: она простирается на миллионы километров, что соответствует нескольким солнечным радиусам, а ее слабое продолжение уходит еще дальше.
Солнечная корона, снимок сделан опять же во время полного солнечного затмения
Плотность вещества в солнечной короне убывает с высотой значительно медленнее, чем плотность воздуха в земной атмосфере. Уменьшение плотности воздуха при подъеме вверх определяется притяжением Земли. На поверхности Солнца сила тяжести значительно больше, и, казалось бы, его атмосфера не должна быть высокой.
В действительности она необычайно обширна. Следовательно, имеются какие-то силы, действующие против притяжения Солнца. Эти силы связаны с огромными скоростями движения атомов и электронов в короне, разогретой до температуры 1-2 млн градусов!
Корону лучше всего наблюдать во время полной фазы солнечного затмения. Правда, за те несколько минут, что она длится, очень трудно зарисовать не только отдельные детали, но даже общий вид короны. Глаз наблюдателя едва лишь начинает привыкать к внезапно наступившим сумеркам, а появившийся из-за края Луны яркий луч Солнца уже возвещает о конце затмения. Поэтому часто зарисовки короны, выполненные опытными наблюдателями во время одного и того же затмения, сильно различались. Не удавалось даже точно определить ее цвет.
Изобретение фотографии дало астрономам объективный и документальный метод исследования. Однако получить хороший снимок короны тоже нелегко. Дело в том, что ближайшая к Солнцу ее часть, так называемая внутренняя корона, сравнительно яркая, в то время как далеко простирающаяся внешняя корона представляется очень бледным сиянием. Поэтому если на фотографиях хорошо видна внешняя корона, то внутренняя оказывается передержанной, а на снимках, где просматриваются детали внутренней короны, внешняя совершенно незаметна.
Чтобы преодолеть эту трудность, во время затмения обычно стараются получить сразу несколько снимков короны – с большими и маленькими выдержками. Или же корону фотографируют, помещая перед фотопластинкой специальный “радиальный” фильтр, ослабляющий кольцевые зоны ярких внутренних частей короны. На таких снимках ее структуру можно проследить до расстояний во много солнечных радиусов.
Уже первые удачные фотографии позволили обнаружить в короне большое количество деталей: корональные лучи, всевозможные “дуги”, “шлемы” и другие сложные образования, четко связанные с активными областями.
Главной особенностью короны является лучистая структура. Корональные лучи имеют самую разнообразную форму: иногда они короткие, иногда длинные, бывают лучи прямые, а иногда они сильно изогнуты. Еще в 1897 г. пулковский астроном Алексей Павлович Ганский обнаружил, что общий вид солнечной короны периодически меняется. Оказалось, что это связано с 11-летним циклом солнечной активности.
С 11-летним периодом меняется как общая яркость, так и форма солнечной короны.
В эпоху максимума солнечных пятен она имеет сравнительно округлую форму. Прямые и направленные вдоль радиуса Солнца лучи короны наблюдаются как у солнечного экватора, так и в полярных областях. Когда же пятен мало, корональные лучи образуются лишь в экваториальных и средних широтах. Форма короны становится вытянутой. У полюсов появляются характерные короткие лучи, так называемые полярные щеточки. При этом общая яркость короны уменьшается.
Эта интересная особенность короны, по видимому, связана с постепенным перемещением в течении 11-летнего цикла зоны преимущественного образования пятен. После минимума пятна начинают возникать по обе стороны от экватора на широтах 30-40°. Затем зона пятнообразования постепенно опускается к экватору.
Тщательные исследования позволили установить, что между структурой короны и отдельными образованиями в атмосфере Солнца существуют определенная связь. Например, над пятнами и факелами обычно наблюдаются яркие и прямые корональные лучи. В их сторону изгибаются соседние лучи. В основании корональных лучей яркость хромосферы увеличивается.
Такую ее область называют обычно возбужденной. Она горячее и плотнее соседних, невозбужденных областей. Над пятнами в короне наблюдаются яркие сложные образования. Протуберанцы также часто бывают окружены оболочками из корональной материи.
Корона оказалась уникальной естественной лабораторией, в которой можно наблюдать вещество в самых необычных и недостижимых на Земле условиях.
На рубеже XIX-XX столетий, когда физика плазмы фактически еще не существовала, наблюдаемые особенности короны представлялись необъяснимой загадкой. Так, по цвету корона удивительно похожа на Солнце, как будто его свет отражается зеркалом. При этом, однако, во внутренней короне совсем исчезают характерные для солнечного спектра фраунгоферовы линии. Они вновь появляются далеко от края Солнца, во внешней короне, но уже очень слабые.
Кроме того, свет короны поляризован: плоскости, в которых колеблются световые волны, располагаются в основном касательно к солнечному диску. С удалением от Солнца доля поляризованных лучей сначала увеличивается (почти до 50%), а затем уменьшается. Наконец, в спектре короны появляются яркие эмиссионные линии, которые почти до середины XX в. не удалось отождествить ни с одним из известных химических элементов.
Оказалось, что главная причина всех этих особенностей короны – высокая температура сильно разреженного газа. При температуре свыше 1 млн градусов средние скорости атомов водорода превышают 100 км/с, а у свободных электронов они еще раз в 40 больше. При таких скоростях, несмотря на сильную разреженность вещества (всего 100 млн частиц в куб см, что в 100 млрд раз разреженнее воздуха на Земле!), сравнительно часты столкновения атомов, особенно с электронами.
Силы электронных ударов так велики, что атомы легких элементов практически полностью лишаются всех своих электронов и от них остаются лишь “голые” атомные ядра. Более тяжелые элементы сохраняют самые глубокие электронные оболочки, переходя в состояние высокой степени ионизации.
Итак, корональный газ – это высокоионизованная плазма; она состоит из множества положительно заряженных ионов всевозможных химических элементов и чуть большего количества свободных электронов, возникающих при ионизации атомов водорода (по одному электрону), гелия (по два электрона) и более тяжелых атомов.
Поскольку в таком газе основную роль играют подвижные электроны, его часто называют электронным газом, хотя при этом подразумевается наличие такого количества положительных ионов, которое полностью обеспечивало бы нейтральность плазмы в целом.
Белый цвет короны объясняется рассеиванием обычного солнечного света на свободных электронах. Они не вкладывают своей энергии при рассеивании: колеблясь в такт световой волны, они лишь изменяют направление рассеиваемого света, при этом поляризуя его. Таинственные яркие линии в спектре порождены необычным излучением высокоионизированных атомов железа, аргона, никеля, кальция и других элементов, возникающим только в условиях сильного разрежения.
Наконец, линии поглощения во внешней короне вызваны рассеиванием на пылевых частицах, которые постоянно присутствуют в межзвездной среде. А отсутствие линии во внутренней короне связано с тем, что при рассеянии на очень быстро движущихся электронах все световые кванты испытывают столь значительные изменения частот, что даже сильные фраунгоферовы линии солнечного спектра полностью “замываются”.
Итак, корона Солнца – самая внешняя часть его атмосферы, самая разреженная и самая горячая. Добавим, что она и самая близкая к нам: оказывается, она простирается далеко от Солнца в виде постоянно движущегося от него потоках плазмы – солнечного ветра. Вблизи Земли его скорость составляет в среднем 400-500 км/с, а порой достигает почти 1000 км/с.
Распространяясь далеко за пределы орбит Юпитера и Сатурна, солнечный ветер образует гигантскую гелиосферу, граничащую с еще более разреженной межзвездной средой.
Фактически мы живем окруженные солнечной короной, хотя и защищенные от ее проникающей радиации надежным барьером в виде земного магнитного поля. Через корону солнечная активность влияет на многие процессы, происходящие на Земле (геофизические явления).
Источник