Сайт о нанотехнологиях #1 в России
Изделия для космической сферы должны быть прочными, легкими, выдерживать сверхнизкие температуры (равно как и сверхвысокие), а иногда даже — пропускать электромагнитное излучение. Об этом рассказал Герман Суворов, глава компании «Инжинити», которая специализируется на выпуске изделий из композитных материалов в области приборостроения и космоса.
Он выступил участником дискуссионной панели в рамках InSpace Forum 2018, который прошел в Москве 21 марта. Там мы встретились и пообщались о том, как проходит разработка изделий для космической сферы и в чем их отличие от «земных» конструкций.
Интервьюер: Сергей Карпов
Респондент: Герман Суворов
Герман Суворов на InSpace Forum 2018
Здравствуйте, Герман. Расскажите, как происходит разработка материалов для заказов в сфере космоса?
По сути мы почти всегда разрабатываем одновременно и материал, и изделие. Композит состоит из двух и более материалов, которые соединены вместе. Так новый материал получает новые свойства. Наша задача — подобрать такие материалы для заказов из сферы космоса, которые дадут нужные свойства. Мы работаем с углепластиком, стеклопластиком, кевларом, полиуретанами, силиконами, керамикой, металлами.
Заказчик предъявляет требование создать материал с определенными характеристиками. Например, ему нужно, чтобы изделие было проницаемым для электромагнитного излучения определенного диапазона. Для нас это означает, что армирующие волокна должны быть радиопрозрачными. Или, например, другому заказчику нужно, чтобы изделие отражало электромагнитное поле — в этом случае мы берем экранирующие волокна.
Есть заказ: сделать изделие с определенными характеристиками. Мы изучаем свойства материалов, описанные в открытых источниках. Но почти всегда нам приходится проводить испытания. Когда нужно обеспечить требуемые свойства с высокой степенью надежности, мы закупаем образцы материалов, делаем из них тестовое изделие, испытываем его на нужные свойства. По результатам мы проектируем финальное изделие и испытываем уже его. Количество тестов может быть разным, ибо зачастую информация о том или ином материале от разных производителей не вполне корректна.
Каким требованиям должны соответствовать материалы для космической сферы?
Это, как правило, выдерживание криогенных температур, отсутствие эмиссии газов и требуемые механические свойства. Мы в курсе всех самых современных разработок материалов в мире, поэтому подбираем составляющие для композита очень тщательно. Чаще всего это какой-либо полимер и армирующие волокна.
По механическим свойствам — это обычно «классика»: прочность и жесткость, способность конструкции сопротивляться разрушению и деформации. Плюс ограничение веса. По традиционному инженерному подходу, если нужно сделать конструкцию прочнее или жестче, то меняется форма и добавляется больше материала. А с помощью современных технологий мы можем не увеличивать массу, но при этом значительно усилить прочность и жесткость.
Также для космической сферы очень важно, чтобы из материала не выделялся газ. В космосе газ может попасть на чувствительные элементы космического аппарата: линзы, зеркала, электронные устройства. Это может повредить работе аппарата. Чтобы обеспечить отсутствие газа в материале, мы добиваемся полной полимеризации, чтобы не было свободных несвязанных молекул, и они не высвобождались в космосе, оседая на чувствительных элементах аппарата. Отдельно проводим испытания для образцов материалов, которые должны использоваться при производстве изделия.
А как насчет защиты от космической радиации?
Да, требование по радионепроницаемости тоже встречается. Но это зависит от того, где будет располагаться изделие: закрыто оно экранирующей оболочкой или открыто для излучения.
Вопрос решается подбором материалов. В зависимости от требований, мы просто добавляем определенные присадки в состав, которые придают свойства защиты от определенного диапазона излучений.
Расскажите подробнее о разработке корпуса батарей для спутника ГЛОНАСС. Какой должна была получиться конструкция? Для чего она служит? Сколько времени ушло на ее создание?
Сам корпус просто служит ячейкой для батареи. Казалось бы, простая задача, но с учетом всех требований она становится наукоемкой инженерной проблемой. Главные требования — механическая прочность и жесткость. Корпус должен был держать форму под нагрузками, выдерживать вибрации, которые присутствуют при запуске ракеты. Разумеется, материал не должен был выделять газ в космосе, а сама конструкция должна была дегазироваться в атмосфере: это означает, что воздух и другие газы из всех скрытых полостей должны выходить достаточно быстро, чтобы не повлиять на конструкцию. Наше изделие за 8–10 минут из атмосферных условий выходит в вакуум — это надо учитывать, потому что если в скрытых полостях будет газ, он может разорвать изделие.
Корпус должен был соответствовать требованиям по пожаростойкости и химической стойкости — чтобы химические вещества батарей в случае прокола не разрушили конструкцию.
На его создание ушло примерно два месяца, причем львиную долю времени заняли испытания изделия. Это по факту очень быстро.
Другой проект «Инжинити» — планер для БПЛА. Какие задачи поставил перед вами заказчик и как вы их решили?
У заказчика уже была конструкция композитного планера. Нужно было увеличить размер полезной нагрузки, при этом сохранив прежний вес. Проблема была решена заменой материала, технологии. Мы сделали оболочку конструкции тоньше и легче. Боюсь ошибиться в цифрах, но площадь планера увеличилась примерно на 20%, а вес мы уменьшили на 30%.
В этом заказе мы не изменяли аэродинамику устройства. Наша задача была — в эти аэродинамические обводы вписать новую конструкцию. Мы использовали несколько решений, которые позволили нам значительно упростить инженерию. Во-первых, это был бесшарнирный подвес элевонов. То есть элевоны стали отклоняться не за счет работы механического шарнира, а благодаря упругости материала — мы организовали специальные гибкие зоны в конструкции. Это одна из «фишек» композитов: мы можем в монолитном изделии сделать переменную жесткость. Такое решение упрощает сборку и снижает вес изделия.
В чем заключаются особенности заказов для космической сферы? Какие есть отличия от «земных» продуктов?
В первую очередь для космоса нужна низкая масса. Мы всегда работаем над снижением массы нашей продукции. Кроме того, требование, чтобы изделие не выделяло газ, практически не имеет значения для «земных» изделий, в то время как для космоса оно крайне важно. Космическая техника всегда находится на «острие» прогресса, поэтому здесь больше возможностей сделать что-то новое.
Плюс, в отличие от авиационной отрасли, космическая не так сильно регулируется. Это нам нравится, поскольку мы можем применять самые современные разработки — как наши собственные, так и достижения других стран. В пилотируемой авиации это сложно сделать.
Почему? В авиации есть определенные требование к материалам и конструкции?
Да. Там нужна обязательная сертификация практически всего, что делается для самолета. Есть несколько органов, которые за этим следят и выдают лицензии и сертификаты. Есть лицензия Минпромторга на разработку и производство авиационной техники. Есть сертификация IPA, выдающаяся каждому летательному аппарату — и при внесении малейших изменений в конструкцию необходимо проходить сертификацию заново.
В целом это понятно, потому что на пилотируемых самолетах летают люди, и если что-то сделать неправильно, то ценой ошибки может стать человеческая жизнь. С другой стороны, бывают такие вещи, которые затормаживают технический прогресс.
Какой заказ для компании «Инжинити» был самым сложным, самым вызывающим? В чем заключались основные трудности и как вы с ними справились?
На самом деле у нас очень много сложных задач и выделить какую-то крайне затруднительно. К нам приходят, когда какая-то команда инженеров билась над проблемой, не пришла к результату, а сроки уже «горят». В каждой задаче есть что-то нетривиальное.
Бывают ли у вашей компании заказы по разработке только материала, без какого-либо изделия?
Была такая задача. К нам обратился клиент, работающий с криогенной техникой. Мы проводили исследования и подбирали материалы, которые работают в криогенных средах (примерно –200° C), сохраняют механическую прочность и прозрачны для электромагнитного излучения. Из разных составляющих мы собрали композит, который соответствует всем этим требованиям.
Какие этапы проходит конкретное изделие, прежде чем вы отправите его заказчику?
Как правило, все начинается с разработки технического задания, потому что часто заказчики приходят с заданиями, которые требуют уточнения. Это очень важный этап — основа всего проекта.
Далее идет этап проектирования. Иногда нужно сделать промышленный дизайн. После этого идет работа с 3D-моделями конструкций в виртуальной среде. Потом мы готовим производство — технологическую оснастку. Готовим материалы, далее создаем прототип. На прототипе мы тестируем все необходимые требования, которые важны заказчику. По результатам исследований вносим необходимые корректировки — и уже потом организовываем серийное производство. Как правило, серийная технология отличается от той, которая была использована при создании прототипа.
Как вы осуществляете контроль качества?
Это всегда тесты и исследования, но все зависит от конкретного материала и изделия. Как правило, для композитов это методы неразрушающего контроля. Они позволяют заглянуть вглубь материала и обнаружить возможные расслоения, непроклеенные места. Благодаря им можно проверить целостность материала и то, насколько он полимеризован. У нас есть подрядчики с необходимым оборудованием — мы их приглашаем и проводим тесты. Проверяем всегда готовый продукт. Если есть несоответствия — отправляем на доработку. Если все в порядке — изделие готово к серийному выпуску.
График мероприятий, посвященных инновационным технологиям, смотрите на сайте Smile-Expo. Ближайшие пройдут в Москве: M-Health Congress (3 апреля) — событие, посвященное телемедицине и индустрии мобильного здоровья; и Artificial Intelligence Conference (19 апреля) — международная выставка-конференция по применению искусственного интеллекта в бизнесе.
Источник
Композиты из Обнинска: от ракет до адронного коллайдера
Композитные материалы – легкие, сверхпрочные и термостойкие – основа современной авиации и космических технологий. В устройстве планера многих самолетов процент композитов сегодня достигает половины всех материалов. Колыбелью для большинства отечественных промышленных композитов является Обнинское научно-производственное предприятие «Технология» им. А. Г. Ромашина, входящее в Госкорпорацию Ростех.
Что такое композитные материалы?
Композитом считается материал, включающий две и более составляющих. При этом свойства материалов, входящих в композит, комбинируются. Сочетание разнородных веществ приводит к созданию нового материала. Использование композитов позволяет уменьшить массу изделия и улучшить его технические характеристики. Замена традиционных для авиации алюминия и титана на композиты – угле- и стеклопластики – тренд в отечественном авиастроении.
Композиты дороже металла и сложнее в производстве. Но такие плюсы, как легкость, прочность и термостойкость, с лихвой покрывают дополнительные расходы на создание композитов при серийном производстве. Кроме того, из композитных материалов можно делать цельные детали больших размеров, что особенно важно в создании космических аппаратов. Композитное производство сегодня переживает бурное развитие, и флагманом этого процесса в России является обнинское предприятие «Технология».
История «Технологии»
История обнинского научного центра начинается в 1959 году. Это был год революции на Кубе, американской выставки в Москве и поездки Хрущева в США. В это «оттепельное» время в Калужской области строится новый опытно-экспериментальный завод технического стекла. Страна, первой запустившая искусственный спутник, нуждалась в новых материалах для авиации и дальнейшего освоения космоса. Уже в 1962 году выпускается первая серийная продукция. В 1977 году сотрудники будущей «Технологии» работают над остеклением и теплозащитой орбитального корабля «Буран». В 1978 году предприятие получает свое современное название.
В начале 80-х обнинские композитные материалы прошли проверку экстремальными температурами планеты Венера на космических аппаратах «Венера-15» и «Венера-16». В 1994 году предприятию был присвоен статус Государственного научного центра РФ. В 90-е годы сотрудники «Технологии» успешно решили задачу модернизации ракеты-носителя «Протон», разработав крупногабаритные композиционные конструкции головного обтекателя. Это позволило снизить массу всей конструкции на полторы тонны. «Протон» − самая мощная и самая активно используемая на данный момент российская ракета, и работа по ее совершенствованию ведется до сих пор. Вывод в космос тонны груза по стоимости сопоставим с тонной золота. Поэтому любой килограмм, сэкономленный за счет композитных материалов, так ценен.
Углепластиковые агрегаты для ракет-носителей, при минимальном весе, имеют внушительные габариты – диаметр более 4 метров и площадь более 30 квадратных метров. Большой опыт работы с композитами позволил «Технологии» запустить в производство углепластиковые обтекатели для ракет-носителей «Протон», «Рокот», «Ангара», тепловые панели для самых современных спутников, детали и блоки для военных и гражданских самолетов.
Композиты в гражданской сфере
Для гражданской авиации на предприятии с 2010 года создаются композитные звукопоглощающие конструкции для двигателей самолетов нового поколения Sukhoi Superjet 100 и МС-21. Использование этих конструкций позволяет снизить шумность двигателей, что является требованием многих зарубежных аэродромов.
Если продолжить разговор о самой ожидаемой новинке гражданского авиапрома в России – авиалайнере МС-21 – то в конструкции этого самолета самая высокая доля углекомпозитных материалов – 35%. Крыло и некоторые другие элементы лайнера выполнены из полимерных композитов производства ОНПП «Технология». Сверхпрочное композитное крыло позволяет значительно улучшить аэродинамику и уменьшить расходы при эксплуатации лайнера на 12-15% по сравнению с существующими аналогами. Выход самолета в серийное производство был запланирован на 2017 год, но в связи с введением санкций прекратились поставки комплектующих, и выпуск был отложен. Сейчас идет активная работа по замене зарубежных материалов на отечественные разработки, в том числе и производства обнинского предприятия.
В 2018 году «Технологией» были подписаны первые контракты на поставку цельнокомпозитного одноместного самолета Т-500 сельскохозяйственного назначения. Благодаря использованию метода горячего формования самолет пригоден для применения в районах со сложными климатическими условиями.
Если изначально композитные технологии создавались для нужд оборонной промышленности и освоения космоса, то сегодня композиционные материалы покоряют гражданский сектор. Изделия «Технологии» применяются в строительстве, транспорте, энергетике, машиностроении, медицине и других сферах.
Не только композиты
Специализация ОНПП «Технология» не ограничивается только производством композитов. На предприятии создано более 800 материалов для авиации и космонавтики, в том числе инновационная технология остекления кабины летательного аппарата с применением поликарбоната, за которую в 2018 году коллектив авторов получил премию Правительства РФ. Новая технология призвана обеспечить безопасность пилота при сверхзвуковых перегрузках.
Разработка большинства сложных оптических изделий в России происходит при участии обнинских ученых. На базе ОНПП «Технология» создаются фонари остекления для боевых самолетов и вертолетов, подводных лодок и батискафов. Ученые из Обнинска работали и над такими необычными изделиями, как кремлевские звезды или саркофаг для мавзолея Владимира Ленина.
В 2005 году ОНПП «Технология» создало новейший метод нанесения наноразмерных покрытий. При использовании такого нанесения улучшаются характеристики летательного аппарата, а кроме того, при сохранении оптической прозрачности стекла, пилоты защищены от вредоносных факторов.
Нанопокрытие состоит из тончайшего напыления золота и индий-олова. Каждый слой в тысячи раз тоньше человеческого волоса, и толщина его не превышает 20 нанометров. Нанопокрытие, не видное для глаза, снижает заметность самолета и защищает летчика от ультрафиолетового излучения. Такие стекла обладают повышенной прочностью и стойкостью к воздействию атмосферы. Эта технология используется в истребителях пятого поколения Су-57. Все композитные материалы самолета также производятся на ОНПП «Технология».
Международные проекты
Обнинские ученые принимают участие в международных научных проектах. Так, в 2004 году на предприятии были созданы уникальные углепластиковые опорные конструкции для Большого адронного коллайдера. Для реализации этой нетривиальной задачи ученым и инженерам из Обнинска пришлось обобщить весь имеющийся опыт в работе с композитами. Показателем уровня компетенции российских ученых можно считать тот факт, что никакое другое предприятие в мире не взялось обеспечить заявленные параметры. Обнинские специалисты справились с задачей.
В феврале 2019 года с космодрома Байконур был запущен египетский спутник EgyptSat-A, бескаркасный корпус для которого был создан в Обнинске. Технология бескаркасного строительства позволяет значительно сократить процесс сборки спутника и, что не менее важно, уменьшить его вес на 15%.
Другим ярким международным проектом является участие ОНПП «Технология» в совместной российско-европейской миссии «ЭкзоМарс-2020» по исследованию Красной планеты. В рамках проекта Россия готовит десантный модуль и посадочную платформу. Защитит модуль при вхождении в марсианскую атмосферу специальный экран из «космического» композита – легкого и прочного материала, который называется стеклосотопласт. Такой материал выдерживает сильную вибрацию, экстремальные температуры и при этом мало весит.
За более чем 50-летнюю историю существования ОНПП «Технология» стало крупнейшим центром по изучению современных неметаллических материалов. Сегодня перед предприятием стоят задачи по импортозамещению и увеличению доли гражданской продукции, с которыми оно успешно справляется. Созданные обнинскими учеными инновационные материалы и технологии изготовления композитов являются самыми передовыми в мире.
Источник