Солнечная энергия. Цифры и факты
Основные характеристики солнечного света
Освещенность (усредненная мощность солнечного излучения, измеренная в верхней атмосфере Земли перпендикулярно солнечным лучам): 1366 Вт на квадратный метр (или 1361, в соответствии с НАСА).
«Стандартное солнце» (пиковая мощность излучения, которая достигает поверхности Земли на уровне моря в районе экватора в безоблачный полдень): 1000 Вт/м 2 , или 1 кВт/м 2 .
Это значение обычно используется в характеристиках фотоэлектрических систем. Здесь и далее все цифры приведены для поверхностей, оптимально расположенных относительно солнца (перпендикулярно лучам) в соответствии с широтой. Для горизонтальных поверхностей вы получите меньше солнечного света: чем дальше от экватора, тем ниже плотность солнечной энергии.
Инсоляция (среднее количество часов «стандартного солнца» на протяжении суток): от 4–5 солнечных часов на северо-востоке США до 5–7 часов на юго-западе. Инсоляция часто указывается в кВт·ч, численно вытекая из значения «стандартного солнца» в 1 кВт.
Общее количество излучаемой энергии солнечного света в день на м 2 на уровне моря: (энергия за день) = 1 кВт·ч × (инсоляция в часах). Учитывая среднюю инсоляцию в США, равную 5 солнечным часам, это значение обычно равно 5 кВт·ч/м 2 .
Солнечная мощность, усредненная за весь день: Wattsaverag = (энергия за день)/24. Для инсоляции в 5 кВт·ч мощность, усредненная за весь день – 5000 Вт/24 = 208 Вт/м 2 . Обратите внимание, что только небольшая часть этой энергии может быть преобразована в электричество из-за не очень высокой эффективности фотоэлектрических систем.
Типовые характеристики фотоэлектрических систем
Средний КПД распространенных коммерческих солнечных панелей: на кристаллическом кремнии (CSI) – 12–17%; тонкопленочных (из аморфного кремния и других материалов) – 8–12%.
Мощность, генерируемая панелью в один квадратный метр: PVwatts = (солнечная мощность) × (средний КПД), где КПД преобразуется в десятичное число.
Пиковая мощность в безоблачный полдень: PVwatts-peak = 1000 Вт × КПД. Как правило, пиковая мощность равна 120170 Вт/м 2 для CSi и 80–120 Вт/м 2 для тонких пленок (TF).
Суммарное усредненное количество энергии, производимой панелью в один м 2 за день: PVday = PVwatts-peak × (Инсоляция в часах). Для инсоляции в 5 часов это значение будет 0.6–0.85 кВт/м 2 для CSi и 0.4–0.6 кВт/м 2 для TF.
Выработанная энергия панели, усредненная за весь день: PVwatts-average = PVday/24. Это примерно 25–35 Вт/м 2 для CSi и 17–25 Вт/м 2 для TF.
Общая энергия, генерируемая фотоэлектрическим модулем на м 2 в год: PVyear = (полная энергия в день) × 365, которая будет равна примерно 219–310 кВт·ч для CSi и 146–219 кВт·ч для TF. Обратите внимание, что инверторы имеют эффективность 95–97%, поэтому фактической электроэнергии будет на 5% меньше.
Ожидаемая стоимость электроэнергии с одного м 2 , сэкономленной за год: Saving = PVyear × 0.95 × (стоимость кВт·ч), где 0.95 – КПД преобразователя и потери в проводах.
В среднем в США стоимость одного кВт·ч электроэнергии равна $0.12, это дает в год $24–35 для CSi и $17–24 для тонких пленок. Таким образом, в лучшем случае, можно будет сэкономить $35 в год на 1 м 2 панели. Эта цифра относится к высокоэффективной системе с номинальной мощностью 170 Вт/м 2 . Учитывая тот факт, что в настоящее время стоимость типичной фотоэлектрической системы составляет $8000 на 1000 Вт, такие установки будут стоить 170/1000 × $8,000 = $1,360 за м 2 . Это означает, что в нашем примере, гипотетический срок окупаемости будет 1360/35 = 39 лет. Никакое оборудование не сможет так долго функционировать. Скидки и кредиты могут сократить это время более чем на половину, однако, все равно, для среднестатистического домашнего хозяйства установка солнечной панели, скорее всего, не окупится. Конечно, это всего лишь пример. В районах с другой инсоляцией и другими затратами на установку срок окупаемости может быть выше или ниже.
Краткая информация о Солнце
- Диаметр: 1,392,000 км;
- Масса: 1,989,100 × 10 24 кг;
- Температура на поверхности:
5,700 °С;
385 млрд. МВт);
Перевод: Андрей Гаврилюк по заказу РадиоЛоцман
Источник
Какую часть энергии Солнца получает Земля?
Солнце – это огромный огненный шар, который является основным источником тепла не только для Земли, но и для других планет Солнечной системы. Сколько же энергии светило дает нашей планете?
Общая мощность солнечного излучения, падающего на Землю, составляет 174 ПВт. Эта величина сопоставима с мощностью 174 млн атомных реакторов ВВЭР-1000, работающих круглосуточно! Одним словом, это очень большая величина. Мощность – это количество энергии, вырабатываемой в единицу времени. То есть каждую секунду Земля получает от Солнца 174 ПДж энергии, или примерно 5 млрд КВт•ч.
Эта цифра кажется огромной, но на самом деле это лишь миллионная часть той энергии, которая вырабатывается Солнцем с помощью термоядерных реакций.
Надо отметить, что примерно 6 % солнечного света просто отражается от атмосферы планеты. Также отражает солнечный свет и поверхность Земли, особенно ее ледовые шапки, расположенные на полюсах. Вообще у каждого небесного тела есть величина, называемое «альбедо» – это доля света, отражаемого телом в космос. У Земли альбедо равно 0,367, то есть в итоге она отражает 36,7% света, падающего на неё.
Солнечная энергия распределяется по земле неравномерно. В районе экватора свет падает на поверхность под прямым углом, поэтому там наблюдаются наиболее высокие температуры. На полюса же свет падает под углом, поэтому в этих районах температуры минимальны.
Излучения Солнца является важнейшим источником энергии для Земли. Если бы Солнце вдруг погасло, то температура Земли в течение года упала бы до –73° С, а со временем достигла бы –240° С. Также солнечный свет является основой почти всей жизни на Земле. Растения в процессе фотосинтеза используют свет звезды и поглощают углекислый газ из атмосферы, в результате чего они и растут. В свою очередь выросшие растения служат пищей для животных, то есть являются начальным звеном почти всех пищевых цепочек. Только некоторые одноклеточные существа могли бы выжить, если бы реакции фотосинтеза вдруг остановились бы.
Список использованных источников
Источник
Энергия Солнца
Источником метеорологических, гидрологических, химических, биологических и других процессов, протекающих на земном шаре, является солнечная энергия. Вся другая поступающая энергия (излучение звезд и планет, космические лучи, внутренняя теплота Земли и др.) ничтожно мала по сравнению с энергией Солнца. Солнце — основной источник жизни на нашей планете и создатель энергетических запасов, которые все в большей степени используются человеком (нефть, каменный уголь, гидроресурсы, энергия ветра и др.). Солнце освещало и грело Землю на протяжении всей ее истории.
Солнечные лучи, распространяясь в мировом пространстве со скоростью 300 000 км/сек, проходят путь от Солнца до Земли, равный около 150 000 000 км, за 8,3 минуты. Несмотря на огромное расстояние, отделяющее нас от Солнца, и положение Земли в космическом пространстве, поверхность земли и нижние слои атмосферы нагреваются солнечными лучами достаточно сильно, чтобы поддержать жизнь на нашей планете.
Общее количество энергии, получаемой Землей от Солнца, можно сравнить с количеством энергии, создаваемой непрерывной работой 543 млрд. паровых машин в 400 л. с. каждая. А ведь это колоссальное количество энергии, которую получает земной шар, является лишь ничтожной долей лучистой энергии, испускаемой Солнцем! Вычисления показывают, что она составляет примерно одну двухмиллиардную долю всей энергии Солнца. Основная же часть солнечной энергии рассеивается в мировом пространстве. Чтобы представить ее размеры, скажем, что она достаточна, чтобы вся вода, содержащаяся в морях и океанах Земли, закипела за 1,5 секунды.
Откуда же на Солнце столько энергии? Этот вопрос всегда привлекал внимание ученых. Если бы Солнце состояло из горючего вещества, то согласно расчетам его энергии хватило бы ненадолго. В частности, если бы Солнце состояло из каменного угля, то оно сгорело бы за 2000—3000 лет. Из различных данных следует, что в настоящее время Солнце испускает примерно такое же количество энергии, какое оно испускало миллиарды лет назад. Еще не так давно существовало мнение, что образование столь чудовищного количества энергии обязано сжатию, испытываемому Солнцем. Но тогда солнечной энергии хватило бы лишь на несколько десятков миллионов лет. Причину неиссякаемости солнечной энергии объяснила современная физика.
Известно, что тела Вселенной состоят из атомов. Атомные ядра содержат в себе огромные запасы энергии, выделяющейся при расщеплении ядра. Как известно, расщепление атомного ядра и получение атомной энергии производятся с помощью специальных установок. Иначе это происходит на Солнце. При температуре в недрах Солнца, достигающей по вычислениям 16 млн. градусов, и колоссальном давлении атомы водорода, составляющие 90% массы Солнца, расщепляются. Происходит непрерывный процесс превращения атомов одних элементов в атомы других. В результате ядерной реакции выделяется внутриатомная энергия. Таким образом, источником солнечной энергии являются ядерные превращения. При образовании из водорода 1 г гелия выделяется 155 млрд. кал. На это тратится ничтожное количество вещества — 0,007 г. Для размеров Солнца эта потеря выражается в 4 200 000 т/сек. Однако она мало отражается на «сгорании» Солнца, так как запасы водорода на Солнце столь огромны, что их хватит еще на много миллиардов лет.
При высокой температуре газы в недрах Солнца очень плотны. Из недр Солнца они стремятся наружу и до его поверхности добираются в течение нескольких тысяч лет. При этом температура газов постепенно повышается и изменяется их количество. На поверхности Солнца температура газов достигает 6000°.
Солнце излучает энергию в виде электромагнитных волн различной длины, однако основная часть солнечной радиации, достигающей нашей планеты, имеет длину волны 0,17—4 микрона. При этом 7% ее составляет ультрафиолетовая радиация, с длиной волн от 0,17 до 0,35 микрона, 46% —световая радиация с длиной волн в пределах 0,35—0,76 микрон и 47%.—инфракрасная радиация с длиной волн от 0,76 до 4 микрон.
Несмотря на небольшой процент ультрафиолетового излучения Солнца, эта радиация играет весьма важную роль в химических преобразованиях атмосферных газов и почти полностью задерживается в верхних слоях атмосферы. Незначительная ее часть, достигающая поверхности земли, оказывает сильное воздействие на животный и растительный мир.
Интенсивность солнечной радиации. За единицу измерения интенсивности солнечной радиации принято количество тепла в калориях 2 , которое получает 1 см 2 поверхности, перпендикулярной солнечным лучам, в 1 минуту (кал/см 2 мин). Как показывают результаты обработки многочисленных наблюдений, при отсутствии атмосферы интенсивность солнечной радиации составляет в среднем около 2 кал/см 2 мин, точнее 1,98 кал. Эту величину принято называть солнечной постоянной. Величина солнечной постоянной подвергается небольшим изменениям в зависимости от расстояния между Землей и Солнцем. Так как движение Земли вокруг Солнца происходит не по кругу, а по эллипсу, в одном из фокусов которого находится Солнце, то в течение года расстояние между Землей и Солнцем изменяется. Наименьшее расстояние между Солнцем и Землей бывает около 3 января, наибольшее — 3 июля. Интенсивность солнечной радиации, характеризуемая солнечной постоянной, испытывает некоторые, правда незначительные, колебания в зависимости от активности процессов на Солнце.
Если бы каждый квадратный сантиметр земной поверхности, перпендикулярной солнечным лучам, при отсутствии атмосферы получал в 1 минуту 1,98 кал, то в течение года при тех же условиях он получил бы около 1000 ккал тепла. Но так как Земля близка по форме к шару и солнечные лучи не везде падают отвесно, да при этом вследствие вращения Земли вокруг своей оси всегда освещена только половина земного шара, то за год на 1 см 2 на верхней границе атмосферы поступает в среднем лишь четвертая часть названной величины, т. е. около 260 ккал/см 2 . Из этого количества солнечного тепла поверхностью земли и атмосферой поглощается только 166 ккал/см 2 год. Остальная часть отражается в мировое пространство. Достигает поверхности земли и поглощается ею до 70% общего количества радиации, используемой Землей, а 30% задерживается атмосферой.
Однако и на различные участки Земли солнечная энергия поступает в неодинаковом количестве. Это зависит от ряда условий.
Наука, занимающаяся изучением притока и расхода солнечной энергии, называется актинометрией. Она является одним из разделов метеорологии.
Погосян, Х.П. Атмосфера Земли/ Х.П. Погосян [и д.р.]. – М.: Просвещение, 1970.- 318 с.
Источник
Количество энергии получаемое от Солнца
Солнечная постоянная, представляет собой то количество электромагнитного излучения, которое доходит от Солнца на расстоянии 1 астрономической единицы (среднее расстояние от Земли до нашей звезды) и попадает перпендикулярно на определенную область. Измеренная спутниками, солнечная постоянная равна 1,366 киловатт на квадратный метр. Наша звезда испускает электромагнитное излучение по всему спектру, от радиоволн до инфракрасного, от видимого света до рентгеновских лучей.
Если бы мы могли сложить всю энергию этого излучения, то получили бы общее излучение Солнца.
Солнечная постоянная
Она является количеством излучения, которое попадает на область перпендикулярную к Солнцу. Фактически лучи, которые мы видим у поверхности Земли, являются малой долей от этой постоянной. Это потому, что атмосфера планеты блокирует некоторые длины волн.
В зависимости от вашего местоположения на планете, количество получаемого света разнится. Солнце излучает в 2 миллиарда раза больше энергии, получаемой на Земле.
Количество Солнечной радиации, получаемой Землей, также изменяется в зависимости от ее точки на орбите. Так как Земля имеет слегка эллиптическую орбиту, на ближайшей точке ее орбиты, количество получаемой энергии равно 1,413 кВт/м2. В ее наиболее удаленной точке, величина Солнечной радиации только 1,321 кВт/м2.
Похожие статьи
Понравилась запись? Расскажи о ней друзьям!
Источник