Меню

Когда у солнца наименьшее склонение

Курс общей астрономии (6 стр.)

§ 15. Эклиптика. Эклиптическая система координат

Измерениями зенитного расстояния или высоты Солнца в полдень (т.е. в момент его верхней кульминации) на одной и той же географической широте было установлено, что склонение Солнца в течение года изменяется в пределах от +23° 27′ до -23°27′, два раза в году переходя через нуль. Из наблюдений за изменением вида ночного неба следует, что и прямое восхождение Солнца на протяжении года также постепенно изменяется от 0° до 360°, или от 0h до 24h. Действительно, в полночь в верхней кульминации находятся те звезды, прямые восхождения которых отличаются от прямого восхождения Солнца на 180° или на 12h. Наблюдения же показывают, что с каждым днем в полночь кульминируют звезды все с большим и большим прямым восхождением, следовательно, и прямое восхождение Солнца с каждым днем увеличивается. Рассматривая непрерывное изменение обеих координат Солнца, нетрудно установить, что оно перемещается среди звезд с запада к востоку по большому кругу небесной сферы, который называется эклиптикой. Плоскость эклиптики E’’ ^ E d (рис. 11) наклонена к плоскости небесного экватора под углом e = 23° 27′. Диаметр ПП’, перпендикулярный к плоскости эклиптики, называется осью эклиптики и пересекается с поверхностью небесной сферы в северном полюсе эклиптики П (лежащем в северном полушарии) и в южном полюсе эклиптики П’ (в южном полушарии).

Эклиптика пересекается с небесным экватором в двух точках: в точке весеннего равноденствия ^ и в точке осеннего равноденствия d. В точке весеннего равноденствия ^ Солнце пересекает небесный экватор, переходя из южного полушария небесной сферы в северное. В точке осеннего равноденствия d Солнце переходит из северного полушария в южное. Точки эклиптики, отстоящие от равноденственных на 90°, называются точкой летнего солнцестояния (в северном полушарии) и точкой зимнего солнцестояния (в южном полушарии). Большой полукруг небесной сферы ПМП’, проходящий через полюсы эклиптики и через светило М, называется кругом широты светила. Эклиптика и точка весеннего равноденствия лежат в основе эклиптической системы небесных координат. Одной координатой в этой системе является эклиптическая широта b светила М, которой называется дуга тМ круга широты (см. рис. 11) от эклиптики до светила, или центральный угол тОМ между плоскостью эклиптики и направлением на светило М. Эклиптические широты отсчитываются в пределах от 0° до + 90° к северному полюсу эклиптики (П) и от 0° до — 90° к ее южному полюсу (П’). Светила, находящиеся на одном малом круге, плоскость которого параллельна плоскости эклиптики, имеют одинаковые эклиптические широты. Эклиптическая широта определяет положение светила на круге широты. Положение же самого круга широты на небесной сфере определяется другой координатой эклиптической долготой l. Эклиптической долготой l светила М называется дуга ^m эклиптики от точки весеннего равноденствия ^ до круга широты, проходящего через светило, или центральный угол ^От (в плоскости эклиптики) между направлением на точку весеннего равноденствия и плоскостью круга широты, проходящего через светило. Эклиптические долготы отсчитываются в сторону видимого годичного движения Солнца по эклиптике, т.е. с запада к востоку в пределах от 0° до 360°. Светила, находящиеся на одном круге широты, имеют одинаковые эклиптические долготы. Эклиптическая система координат применяется преимущественно в теоретической астрономии при определении орбит небесных тел.

§ 16. Изменение экваториальных координат Солнца

Изменение экваториальных координат Солнца при его движении по эклиптике происходит следующим образом. Когда Солнце находится в точке весеннего равноденствия ^ (см. § 15), его прямое восхождение и склонение равны нулю. Затем с каждым днем прямое восхождение и склонение Солнца увеличиваются, и когда Солнце придет в точку летнего солнцестояния, его прямое восхождение станет равным 90° или бh, а склонение достигает максимального значения + 23° 27′. После этого склонение Солнца начинает уменьшаться, а прямое восхождение по-прежнему растет. Когда Солнце придет в точку осеннего равноденствия, его прямое восхождение a = 180° или 12h, а склонение d = 0°. Далее, прямое восхождение Солнца, продолжая увеличиваться, в точке зимнего солнцестояния становится равным 270° или 18h, а склонение достигает своего минимального значения — 23° 27′. После этого склонение Солнца начинает расти, и когда Солнце придет в точку весеннего равноденствия, его склонение снова становится равным нулю, а прямое восхождение, достигнув значения 360° или 24h, обращается в нуль. Эти изменения экваториальных координат Солнца в течение года происходят неравномерно. Склонение изменяется быстрее всего при движении Солнца вблизи равноденственных точек и медленнее всего — вблизи точек солнцестояний. Прямое восхождение, наоборот, медленнее меняется вблизи равноденственных точек и быстрее — вблизи точек солнцестояний. При этом скорость изменения прямого восхождения Солнца вблизи точки летнего солнцестояния меньше, чем вблизи точки зимнего солнцестояния. Видимое движение Солнца по эклиптике есть следствие действительного движения Земли — обращения ее вокруг Солнца. Движение Земли вокруг Солнца происходит в том же направлении, что и вращение Земли вокруг оси, и неравномерно (см. § 40). При этом ось вращения Земли всегда наклонена к плоскости орбиты Земли под углом 66° 33′. Поэтому нам и кажется, что Солнце так же неравномерно перемещается по небесному своду среди звезд, так же с запада на восток, но по окружности (эклиптике), плоскость которой наклонена к плоскости небесного (и земного) экватора под углом 23° 27′ = 90° — 66°33′. Когда Солнце находится в точке весеннего равноденствия (d = 0), то оно на всех географических широтах земной поверхности восходит в точке востока Е и заходит в точке запада W (см. § 13). Половина его суточного пути находится над горизонтом, половина под горизонтом. Следовательно, на всем земном шаре, кроме полюсов, в этот день продолжительность дня равна продолжительности ночи. Этот день называется днем весеннего равноденствия (около 21 марта) и считается началом весны в северном полушарии Земли. (В южном полушарии этот момент соответствует началу осени.) Полуденная высота Солнца в день весеннего равноденствия на данной северной широте j согласно формуле (1.7) h¤ = 90° — j. Когда Солнце находится в точке летнего солнцестояния (d = +23° 27′), то оно восходит на данной северной широте j на северо-востоке, а заходит на северо-западе. Большая часть его суточного пути находится над горизонтом. Продолжительность дня в северном полушарии Земли максимальная, ночи минимальная, в южном — наоборот. Этот день называется днем летнего солнцестояния (около 22 июня) и считается началом лета в северном полушарии Земли (в южном этот момент соответствует началу зимы). В день летнего солнцестояния полуденная высота Солнца на данной северной широте j достигает максимального значения hmax = 90° — j + 23° 27’ Когда Солнце находится в точке осеннего равноденствия (d = 0), то оно снова на всей Земле восходит в точке востока и заходит в точке запада, и снова на всех широтах, кроме полюсов, продолжительность дня равна продолжительности ночи. Этот день называется днем осеннего равноденствия (около 23 сентября) и считается началом осени в северном полушарии Земли (началом весны — в южном полушарии). Высота Солнца в полдень на данной широте j в день осеннего равноденствия снова равна 90° — j. Наконец, когда Солнце находится в точке зимнего солнцестояния (d = — 23° 27’), то оно восходит на юго-востоке, а заходит на юго-западе. Большая часть его суточного пути находится под горизонтом. На данной северной географической широте j продолжительность дня минимальна, ночи — максимальна (в южных широтах, наоборот, продолжительность дня максимальна, ночи — минимальна). Этот день называется днем зимнего солнцестояния (около 22 декабря) и считается началом зимы в северном полушарии Земли (началом лета — в южном полушарии). Высота Солнца в день зимнего солнцестояния на данной северной широте j достигает минимального значения hmin = 90° — j — 23° 27’ В остальные дни года высота Солнца в полдень лежит между значениями hmax и hmin.

Читайте также:  Хромосферу солнца нельзя увидеть

§ 17. Суточное движение Солнца на разных широта

Источник

Положение Солнца — Position of the Sun

Положение Солнца в небе является функцией как времени и географического расположения наблюдений на земной поверхности «s. Как околоземные орбиты на Солнце на протяжении более года , Солнце , кажется, двигаться по отношению к неподвижным звездам на небесной сфере , по круговой траектории , называемой эклиптикой .

Вращение Земли вокруг своей оси вызывает суточное движение , так что кажется, что Солнце движется по небу по пути Солнца, который зависит от географической широты наблюдателя . Время, когда Солнце проходит через меридиан наблюдателя, зависит от географической долготы .

Таким образом, чтобы найти положение Солнца в данном месте в данный момент времени, можно проделать следующие три шага:

  1. вычислить положение Солнца в эклиптической системе координат ,
  2. преобразовать в экваториальную систему координат , и
  3. преобразовать в горизонтальную систему координат для местного времени и местоположения наблюдателя.

СОДЕРЖАНИЕ

Примерное положение

Эклиптические координаты

Эти уравнения из Астрономического альманаха можно использовать для расчета видимых координат Солнца , среднего равноденствия и эклиптики даты с точностью около 0 ° 0,01 (36 дюймов) для дат между 1950 и 2050 годами. закодированы в подпрограмму Fortran 90 в Ref. и используются для расчета зенитного угла Солнца и солнечного азимута в наблюдаемом с поверхности Земли.

Начните с вычисления n — количества дней (положительных или отрицательных, включая дробные дни) с полудня по Гринвичу по земному времени 1 января 2000 года ( J2000.0 ). Если известна юлианская дата нужного времени, то

п знак равно J D — 2451545,0 <\ displaystyle n = \ mathrm -2451545.0>

Средняя долгота Солнца, с поправкой на аберрации света , является:

L знак равно 280 460 ∘ + 0,9856474 ∘ п <\ displaystyle L = 280,460 ^ <\ circ>+0.9856474 ^ <\ circ>n>

Средняя аномалия Солнца ( на самом деле, Земли по своей орбите вокруг Солнца, но это удобно делать вид Солнца вокруг Земли), является:

грамм знак равно 357 528 ∘ + 0,9856003 ∘ п <\ displaystyle g = 357,528 ^ <\ circ>+0,9856003 ^ <\ circ>n>

Задайте и в диапазоне от 0 ° до 360 °, добавляя или вычитая кратные 360 ° по мере необходимости. L <\ displaystyle L> грамм <\ displaystyle g>

λ знак равно L + 1,915 ∘ грех ⁡ грамм + 0,020 ∘ грех ⁡ 2 грамм <\ displaystyle \ lambda = L + 1,915 ^ <\ circ>\ sin g + 0,020 ^ <\ circ>\ sin 2g>

β знак равно 0 <\ displaystyle \ beta = 0> ,

поскольку эклиптическая широта Солнца никогда не превышает 0,00033 °,

а расстояние от Солнца до Земли в астрономических единицах равно:

р знак равно 1.00014 — 0,01671 потому что ⁡ грамм — 0,00014 потому что ⁡ 2 грамм <\ Displaystyle R = 1.00014-0.01671 \ cos g-0.00014 \ cos 2g> .

Наклон эклиптики

Если угол наклона эклиптики нигде не получен, его можно приблизительно определить:

ϵ знак равно 23 439 ∘ — 0,0000004 ∘ п <\ displaystyle \ epsilon = 23,439 ^ <\ circ>-0,0000004 ^ <\ circ>n>

Экваториальные координаты

λ <\ displaystyle \ lambda> , и образуют полное положение Солнца в эклиптической системе координат . Это может быть превращено в экваториальной системе координат пути вычисления наклонения эклиптики , и продолжает: β <\ displaystyle \ beta> р <\ displaystyle R> ϵ <\ displaystyle \ epsilon>

α знак равно арктан ⁡ ( потому что ⁡ ϵ загар ⁡ λ ) <\ Displaystyle \ альфа = \ arctan (\ соз \ эпсилон \ загар \ лямбда)> , где находится в том же квадранте, что и , α <\ displaystyle \ alpha> λ <\ displaystyle \ lambda>

Чтобы получить RA в правом квадранте в компьютерных программах, используйте функцию Arctan с двойным аргументом, такую ​​как ATAN2 (y, x)

α знак равно арктан ⁡ 2 ( потому что ⁡ ϵ грех ⁡ λ , потому что ⁡ λ ) <\ Displaystyle \ альфа = \ arctan 2 (\ соз \ эпсилон \ грех \ лямбда, \ соз \ лямбда)>

δ знак равно Arcsin ⁡ ( грех ⁡ ϵ грех ⁡ λ ) <\ Displaystyle \ дельта = \ arcsin (\ грех \ эпсилон \ грех \ лямбда)> .

Прямоугольные экваториальные координаты

Правые прямоугольные экваториальные координаты в астрономических единицах равны:

Икс знак равно р потому что ⁡ λ <\ displaystyle X = R \ cos \ lambda> Y знак равно р потому что ⁡ ϵ грех ⁡ λ <\ Displaystyle Y = R \ соз \ эпсилон \ грех \ лямбда> Z знак равно р грех ⁡ ϵ грех ⁡ λ <\ Displaystyle Z = р \ грех \ эпсилон \ грех \ лямбда> Где ось находится в направлении мартовского равноденствия , ось — в сторону июньского солнцестояния , а ось — в направлении северного полюса мира . Икс <\ displaystyle X> Y <\ displaystyle Y> Z <\ displaystyle Z>

Читайте также:  Пришла весна пригрело солнце по оврагам побежали быстрые ручейки снег почти растаял

Горизонтальные координаты

Склонение Солнца с Земли

Обзор

Солнце, кажется, движется на север во время северной весны , пересекая небесный экватор в мартовское равноденствие . Его склонение достигает максимума, равного углу наклона оси Земли (23,44 °) во время июньского солнцестояния , затем уменьшается до минимума (-23,44 °) во время декабрьского солнцестояния , когда его значение является отрицательным для наклона оси. Эта вариация порождает времена года .

Линейный график склонения Солнца в течение года напоминает синусоиду с амплитудой от 23,44 °, а одна лопасти волны на несколько дней дольше , чем другие, среди других отличий.

Следующие явления произошли бы, если бы Земля была идеальной сферой , вращающейся по круговой орбите вокруг Солнца, и если бы ее ось была наклонена на 90 °, так что сама ось находилась в плоскости орбиты (аналогично Урану ). На одну дату в год, Солнце будет прямо над головой на Северный полюс , поэтому его склонение будет + 90 °. В течение следующих нескольких месяцев подсолнечная точка будет двигаться к Южному полюсу с постоянной скоростью, пересекая круги широты с постоянной скоростью, так что склонение Солнца будет линейно уменьшаться со временем. В конце концов, Солнце окажется прямо над Южным полюсом со склонением -90 °; тогда он начнёт двигаться на север с постоянной скоростью. Таким образом, график солнечного склонения, если смотреть с этой сильно наклоненной Земли, будет напоминать треугольную волну, а не синусоидальную волну, зигзагообразную между плюсами и минусами 90 °, с линейными сегментами между максимумами и минимумами.

Если осевой наклон на 90 ° уменьшается, то абсолютные максимальное и минимальное значения наклона уменьшатся, чтобы равняться осевому наклону. Кроме того, формы максимумов и минимумов на графике станут менее острыми, изогнувшись, чтобы напоминать максимумы и минимумы синусоидальной волны. Однако даже когда осевой наклон равен наклону реальной Земли, максимумы и минимумы остаются более острыми, чем у синусоидальной волны.

На самом деле, орбита Земли является эллиптической . Земля движется вокруг Солнца около перигелия в начале января быстрее , чем около афелия в начале июля. Это заставляет процессы, подобные изменению солнечного склонения, происходить в январе быстрее, чем в июле. На графике это делает минимумы более острыми, чем максимумы. Кроме того, поскольку перигелий и афелий не происходят в точные даты солнцестояний, максимумы и минимумы слегка асимметричны. Темпы изменений до и после не совсем равны.

Поэтому график видимого склонения Солнца по-разному отличается от синусоидальной волны. Как показано ниже, его точное вычисление связано с некоторыми трудностями.

Расчеты

Наклонение Солнца , δ , — это угол между лучами Солнца и плоскостью экватора Земли. Наклон оси Земли ( астрономы называют ее наклоном эклиптики ) — это угол между осью Земли и линией, перпендикулярной орбите Земли. Наклон оси Земли медленно меняется в течение тысяч лет, но его текущее значение ε = 23 ° 26 ‘почти постоянно, поэтому изменение солнечного склонения в течение одного года почти такое же, как и в течение следующего года.

Во время солнцестояний угол между лучами Солнца и плоскостью экватора Земли достигает максимального значения 23 ° 26 ‘. Следовательно, δ = + 23 ° 26 ‘в день северного летнего солнцестояния и δ = -23 ° 26′ в период южного летнего солнцестояния.

В момент каждого равноденствия центр Солнца, кажется, проходит через небесный экватор , а δ равно 0 °.

Склонение Солнца в любой момент рассчитывается по формуле:

δ ⊙ знак равно Arcsin ⁡ [ грех ⁡ ( — 23,44 ∘ ) ⋅ грех ⁡ ( E L ) ] <\ displaystyle \ delta _ <\ odot>= \ arcsin \ left [\ sin \ left (-23,44 ^ <\ circ>\ right) \ cdot \ sin \ left (EL \ right) \ right]>

где EL — долгота эклиптики (по сути, положение Земли на ее орбите). Поскольку эксцентриситет земной орбиты невелик, ее орбиту можно аппроксимировать как круг, что вызывает ошибку до 1 °. Приближение круга означает, что EL будет на 90 ° впереди солнцестояний на орбите Земли (в дни равноденствия), так что sin (EL) можно записать как sin (90 + NDS) = cos (NDS), где NDS — количество дни после декабрьского солнцестояния. Также используя приближение, что arcsin [sin (d) · cos (NDS)] близко к d · cos (NDS), получается следующая часто используемая формула:

δ ⊙ знак равно — 23,44 ∘ ⋅ потому что ⁡ [ 360 ∘ 365 ⋅ ( N + 10 ) ] <\ displaystyle \ delta _ <\ odot>= — 23,44 ^ <\ circ>\ cdot \ cos \ left [<\ frac <360 ^ <\ circ>> <365>> \ cdot \ left (N + 10 \ right )\верно]>

где N — день года, начинающийся с N = 0 в полночь по всемирному времени (UT), когда начинается 1 января (т.е. часть дней в порядковой дате -1). Число 10 в (N + 10) — это приблизительное количество дней после декабрьского солнцестояния до 1 января. Это уравнение переоценивает склонение около сентябрьского равноденствия до + 1,5 °. Аппроксимация синусоидальной функции сама по себе приводит к ошибке до 0,26 ° и не рекомендуется для использования в приложениях солнечной энергии. Формула Спенсера 1971 года (основанная на ряде Фурье ) также не рекомендуется из-за ошибки до 0,28 °. Дополнительная ошибка до 0,5 ° может возникнуть во всех уравнениях для равноденствий, если не использовать десятичный разряд при выборе N для корректировки времени после полуночи UT для начала этого дня. Таким образом, приведенное выше уравнение может иметь погрешность до 2,0 °, что примерно в четыре раза больше угловой ширины Солнца, в зависимости от того, как оно используется.

Склонение можно более точно рассчитать, если не делать двух приближений, используя параметры орбиты Земли для более точной оценки EL:

δ ⊙ знак равно Arcsin ⁡ [ грех ⁡ ( — 23,44 ∘ ) ⋅ потому что ⁡ ( 360 ∘ 365,24 ( N + 10 ) + 360 ∘ π ⋅ 0,0167 грех ⁡ ( 360 ∘ 365,24 ( N — 2 ) ) ) ] <\ displaystyle \ delta _ <\ odot>= \ arcsin \ left [\ sin \ left (-23,44 ^ <\ circ>\ right) \ cdot \ cos \ left (<\ frac <360 ^ <\ circ>> < 365,24>> \ left (N + 10 \ right) + <\ frac <360 ^ <\ circ>> <\ pi>> \ cdot 0,0167 \ sin \ left (<\ frac <360 ^ <\ circ>> <365,24 >> \ left (N-2 \ right) \ right) \ right) \ right]>

Читайте также:  Спутники солнца за плутоном

который можно упростить, оценив константы до:

δ ⊙ знак равно — Arcsin ⁡ [ 0,39779 потому что ⁡ ( 0,98565 ∘ ( N + 10 ) + 1,914 ∘ грех ⁡ ( 0,98565 ∘ ( N — 2 ) ) ) ] <\ displaystyle \ delta _ <\ odot>= — \ arcsin \ left [0,39779 \ cos \ left (0,98565 ^ <\ circ>\ left (N + 10 \ right) +1,914 ^ <\ circ>\ sin \ left ( 0,98565 ^ <\ circ>\ left (N-2 \ right) \ right) \ right) \ right]>

N — количество дней с полуночи UT, когда начинается 1 января (т. Е. Часть дней в порядковой дате -1), и может включать десятичные дроби для корректировки на местное время позже или раньше в течение дня. Число 2 в (N-2) — это приблизительное количество дней до перигелия Земли после 1 января . Число 0,0167 — текущее значение эксцентриситета орбиты Земли. Эксцентриситет очень медленно меняется во времени, но для дат, довольно близких к настоящему, его можно считать постоянным. Наибольшие ошибки в этом уравнении составляют менее ± 0,2 °, но менее ± 0,03 ° для данного года, если число 10 корректируется в большую или меньшую сторону в дробных днях, в зависимости от того, насколько далеко декабрьское солнцестояние предыдущего года произошло до или после. полдень 22 декабря. Эти точности сравниваются с продвинутыми расчетами NOAA, которые основаны на алгоритме Жана Миуса 1999 года с точностью до 0,01 °.

(Приведенная выше формула связана с достаточно простым и точным вычислением уравнения времени , которое описано здесь .)

Более сложные алгоритмы корректируют изменения эклиптической долготы, используя термины в дополнение к поправке на эксцентриситет 1-го порядка, описанной выше. Они также исправляют наклон 23,44 °, который очень незначительно меняется со временем. Поправки также могут включать влияние Луны на смещение положения Земли от центра орбиты пары вокруг Солнца. После определения склонения относительно центра Земли применяется дополнительная поправка на параллакс , которая зависит от расстояния наблюдателя от центра Земли. Эта поправка меньше 0,0025 °. Погрешность вычисления положения центра Солнца может быть менее 0,00015 °. Для сравнения, ширина Солнца около 0,5 °.

Атмосферная рефракция

Вышеописанные расчеты склонения не включают эффекты преломления света в атмосфере, из-за которых видимый угол возвышения Солнца, видимый наблюдателем, оказывается выше фактического угла возвышения, особенно при малых возвышениях Солнца. Например, когда Солнце находится на высоте 10 °, кажется, что оно находится под углом 10,1 °. Наклонение Солнца может использоваться вместе с его прямым восхождением для расчета его азимута, а также его истинного возвышения, которое затем может быть скорректировано на преломление, чтобы определить его видимое положение.

Уравнение времени

В дополнение к ежегодному колебанию видимого положения Солнца с севера на юг, соответствующему описанному выше изменению его склонения, существует также меньшее, но более сложное колебание в направлении восток-запад. Это вызвано наклоном оси Земли, а также изменениями скорости ее орбитального движения вокруг Солнца, вызванными эллиптической формой орбиты. Основными эффектами этого колебания с востока на запад являются изменения во времени таких событий, как восход и закат, а также в чтении солнечных часов по сравнению с часами, показывающими местное среднее время . Как показано на графике, солнечные часы могут быть быстрее или медленнее примерно на 16 минут по сравнению с часами. Поскольку Земля вращается со средней скоростью в один градус каждые четыре минуты относительно Солнца, это 16-минутное смещение соответствует сдвигу на восток или запад примерно на четыре градуса видимого положения Солнца по сравнению с его средним положением. Смещение на запад заставляет солнечные часы опережать время.

Поскольку основной эффект этого колебания касается времени, его называют уравнением времени , используя слово «уравнение» в несколько архаичном смысле, означающем «исправление». Колебания измеряются в единицах времени, минутах и ​​секундах, что соответствует количеству, на которое солнечные часы опережают часы. Уравнение времени может быть положительным или отрицательным.

Аналемма

Аналемма представляет собой диаграмма , которая показывает годовые изменения положения Солнца на небесной сфере , относительно среднего положения, как видно из фиксированного места на Земле. (Слово аналемма также иногда, но редко, используется в других контекстах.) Его можно рассматривать как изображение видимого движения Солнца в течение года , которое напоминает восьмерку. Аналемму можно изобразить, наложив фотографии, сделанные в одно и то же время дня с разницей в несколько дней в течение года .

Аналемму также можно рассматривать как график склонения Солнца , обычно отображаемый вертикально, против уравнения времени , нанесенного горизонтально. Обычно масштабы выбираются так, чтобы равные расстояния на диаграмме представляли равные углы в обоих направлениях на небесной сфере. Таким образом, 4 минуты (точнее 3 минуты 56 секунд) в уравнении времени представлены таким же расстоянием, как 1 ° в склонении , поскольку Земля вращается со средней скоростью 1 ° каждые 4 минуты относительно Солнца. .

Аналемма нарисована так, как если бы наблюдатель смотрел вверх на небе. Если вверху показан север , то справа — запад . Обычно это делается даже тогда, когда аналемма отмечена на географическом глобусе , на котором континенты и т. Д. Показаны с запада влево.

Некоторые аналеммы отмечены, чтобы показать положение Солнца на графике в разные даты с интервалом в несколько дней в течение года. Это позволяет аналемме , которые будут использоваться , чтобы сделать простые аналоговые вычисления величин , такими как время и азимуты от восхода и захода солнца . Аналеммы без даты используются для корректировки времени, показываемого солнечными часами .

Источник

Adblock
detector