Меню

Кинетическая энергия при движении планеты вокруг солнца

Как изменяются кинетическая, полная и потенциальная энергии планеты при ее движении вокруг Солнца? В какое время линейная скорость движения Земли по орбите и почему?

Кинетическая энергия Солнца, представленного в виде вращающейся сферы с массой, сосредоточенной в основном в оболочке.

Кинетическая энергия движения всех планет Солнечной системы без учета кинетических энергий вращения планет вокруг собственных осей и энергии движения Плутона равняется:

где Mn – масса n-ой планеты; vn – орбитальная скорость n-ой планеты.Учтем, что при рождении планеты и переходе через солнечную оболочку ее зародыша происходит скачок гравитационного потенциала в 4

. Приравнивая вышеприведенные формулы с учетом этого скачка, получим для закона сохранения кинетической энергии в Солнечной системе следующее выражение:

Погрешность при расчете по этой формуле составляет 5.

4%.Поэтому следует учесть и кинетическую энергию вращения планет, которая составляет 8.

42 1034 Дж.

Эта энергия не связана со скачком потенциала 4

. Тогда окончательно имеем:

где vоn – экваториальная скорость вращения n-ой планеты.

Закон сохранения полного момента количества движения в Солнечной системе без доказательства следует из следующего выражения:

Расчет по этой формуле дает ошибку в 1.

6%.Принципиально не важна последовательность рождения планет, а важно только то обстоятельство, что каждое новое рождение планеты связано с переходом через оболочку порождающей ее звезды или планеты. По-видимому, внутренние планеты были сформированы непосредственно Солнцем, а внешние планеты Юпитер и Сатурн сформировались совместно в процессе рождения Солнца путем распада их общей оболочки на три независимых пузыря.

Изменение потенциальной энергии системы, взятое с обратным знаком, равно работе внутренних консервативных сил:

Согласно второму закону Кеплера, каждая планета движется в плоскости, проходящей через центр Солнца, причем площадь сектора орбиты, описанная радиусом-вектором планеты, изменяется пропорционально времени. Применительно к нашей Солнечной системе, с этим законом связаны два понятия: перигелий – ближайшая к Солнцу точка орбиты, и афелий – наиболее удаленная точка орбиты. Тогда можно утверждать, что планета движется вокруг Солнца неравномерно: имея линейную скорость в перигелие больше, чем в афелие.

Статьи и публикации:

Питание
Питание окуня имеет возрастные и сезонные особенности. Личинки длиной 6-8 мм питаются зоопланктоном, предпочитая науплеальные стадии копепод: до 90% по массе. У молоди в пищевом комке преобладают амфиподы и насекомые. При длине тела 20-60 .

Сухая кожа и уход за ней
Сухость кожи вызывается, с одной стороны, недостаточным выделением кожного жира, а с другой — усиленным испарением влаги с поверхности кожи. Сухость кожи может развиваться под влиянием различных внешних факторов: ветра или солнечных луче .

Взаимоотношения организма со средой.
Основоположник русской физиологии И.М. Сеченов писал, что «организм без внешней среды, поддерживающей его существование, невозможен, поэтому в научное определение организма должна входить и среда, влияющая на него». Следовательно, вне при .

Источник

Потенциальная энергия взаимодействия двух тел

Пусть два тела с массами M и m находятся на расстоянии R друг от друга. Тогда энергия их взаимодействия равна

Полная энергия

Если тело находится в гравитационном поле и имеет некоторую скорость, то его полная энергия равна

Таким образом, в соответствии с законом сохранения энергии полная энергия тела в гравитационном поле остается неизменной.

Теорема вириала

В случае кругового движения кинети­ческая энергия в 2 раза меньше по модулю потенциальной. Поэтому

Полная энергия может быть положительной и отрицательной, а также равняться нулю. Знак полной энергии определяет характер движения небесного тела.

При Eпол Система с отрицательной полной энергией называется гравитационно связанной .

При Eпол = 0 тело движется по параболической траектории. Скорость тела на бесконечности равна нулю.

При Eпол > 0 движение происходит по гиперболической траектории. Тело удаляется на бесконечность, имея запас кинетической энергии.

Первая космическая скорость

Это скорость движения по круговой траектории вблизи поверхности Земли

Это минимальная скорость, которую нужно сообщить телу, чтобы оно преодолело притяжение Земли и стало спутником. Для Земли примерно 7,9 км/с.

Вторая космическая скорость

Это скорость движения по параболической траектории

Читайте также:  Мимо нам мимо нас пьяное солнце танцы

Она равна минимальной скорости, которую нужно сообщить телу на поверхности Земли, чтобы оно, преодолев земное притяжение, стало искусственным спутником Солнца . Находится из условия равенства нулю полной энергии системы. Для Земли примерно 11,2 км/с.

Третья космическая скорость

Это скорость, при которой тело преодолевает притяжение Солнца

где v – орбитальная скорость планеты, v 2 – вторая космическая скорость для планеты. Для Земли примерно 16,6 км/с.

Задачи:

Звезда и планета обращаются вокруг общего неподвижного центра масс по круговым орбитам. Найдите массу планеты m, если известно, что скорость движения планеты равна v 1 , а скорость движения и период обращения звезды равны v 2 и T соответственно.

Если бы все линейные размеры Солнечной системы были пропорционально сокращены так, чтобы среднее расстояние между Солнцем и Землей стало 1 м, то какова была бы продолжительность одного года? Считайте, что плотность небесных тел при этом не меняется.

Автоматическая станция обращается вокруг планеты Марс с периодом T = 18 ч. Максимальное удаление от поверхности Марса (в апоцентре) a = 25000 км, минимальное (в перицентре) p = 1380 км. По указанным параметрам орбиты станции определите отношение массы Марса к массе Земли. Радиус Марса rм = 3400 км, радиус Земли rз = 6400 км.

Вычислить массу Юпитера, зная, что его спутник Ио совершает оборот вокруг планеты за 1,77 суток, а большая полуось его орбиты 422 тыс. км.

Вычислить параболическую скорость на поверхности Луны, RЛ = 0.27 радиуса Земли, MЛ = 1/81 массы Земли.

Источник

LiveInternetLiveInternet

Музыка

Поиск по дневнику

Подписка по e-mail

Статистика

Законы движения планет Солнечной системы

Законы движения планет Солнечной системы

Важную роль в формировании представлений о строении Солнечной системы сыграли также законы движения планет, которые были открыты Иоганном Кеплером (1571-1630) и стали первыми естественнонаучными законами в их современном понимании. Работы Кеплера создали возможность для обобщения знаний по механике той эпохи в виде законов динамики и закона всемирного тяготения, сформулированных позднее Исааком Ньютоном. Многие ученые вплоть до начала XVII в. считали, что движение небесных тел должно быть равномерным и происходить по «самой совершенной» кривой- окружности. Лишь Кеплеру удалось преодолеть этот предрассудок и установить действительную форму планетных орбит, а также закономерность изменения скорости движения планет при их обращении вокруг Солнца. В своих поисках Кеплер исходил из убеждения, что «в мире правит число», высказанного еще Пифагором. Он искал соотношения между различными величинами, характеризующими движение планет, — размеры орбит, период обращения, скорость. Кеплер действовал фактически вслепую, чисто эмпирически. Он пытался сопоставить характеристики движения планет с закономерностями музыкальной гаммы, длиной сторон описанных и вписанных в орбиты планет многоугольников и т.д. Кеплеру необходимо было построить орбиты планет, перейти от экваториальной системы координат, указывающих положение планеты на небесной сфере, к системе координат, указывающих ее положение в плоскости орбиты. Он воспользовался при этом собственными наблюдениями планеты Марс, а также многолетними определениями координат и конфигураций этой планеты, проведенными его учителем Тихо Браге. Орбиту Земли Кеплер считал (в первом приближении) окружностью, что не противоречило наблюдениям. Для того чтобы построить орбиту Марса, он применил способ, который показан на рисунке ниже.

Пусть нам известно угловое расстояние Марса от точки весеннего равноденствия во время одного из противостояний планеты — его прямое восхождение «15 которое выражается углом g(гамма)Т1М1, где T1 — положение Земли на орбите в этот момент, а M1 — положение Марса. Очевидно, что спустя 687 суток (таков звездный период обращения Марса) планета придет в ту же точку своей орбиты.

Если определить прямое восхождение Марса на эту дату, то, как видно из рисунка, можно указать положение планеты в пространстве, точнее, в плоскости ее орбиты. Земля в этот момент находится в точке Т2, и, следовательно, угол gT2M1 есть не что иное, как прямое восхождение Марса — a2. Повторив подобные операции для нескольких других противостояний Марса, Кеплер получил еще целый ряд точек и, проведя по ним плавную кривую, построил орбиту этой планеты. Изучив расположение полученных точек, он обнаружил, что скорость движения планеты по орбите меняется, но при этом радиус-вектор планеты за равные промежутки времени описывает равные площади. Впоследствии эта закономерность получила название второго закона Кеплера.

Читайте также:  Крылья у солнца спалить

Радиусом-вектором называют в данном случае переменный по своей величине отрезок, соединяющий Солнце и ту точку орбиты, в которой находится планета. АА1, ВВ1 и CC1 — дуги, которые проходит планета за равные промежутки времени. Площади заштрихованных фигур равны между собой. Согласно закону сохранения энергии, полная механическая энергия замкнутой системы тел, между которыми действуют силы тяготения, остается неизменной при любых движениях тел этой системы. Поэтому сумма кинетической и потенциальной энергий планеты, которая движется вокруг Солнца, неизменна во всех точках орбиты и равна полной энергии. По мере приближения планеты к Солнцу возрастает ее скорость, увеличивается кинетическая энергия, но вследствие уменьшения расстояния до Солнца уменьшается энергия потенциальная. Установив закономерность изменения скорости движения планет, Кеплер задался целью определить, по какой кривой происходит их обращение вокруг Солнца. Он был поставлен перед необходимостью сделать выбор одного из двух возможных решений: 1) считать, что орбита Марса представляет собой окружность, и допустить, что на некоторых участках орбиты вычисленные координаты планеты расходятся с наблюдениями (из-за ошибок наблюдений) на 8′; 2) считать, что наблюдения таких ошибок не содержат, а орбита не является окружностью. Будучи уверенным в точности наблюдений Тихо Браге, Кеплер выбрал второе решение и установил, что наилучшим образом положения Марса на орбите совпадают с кривой, которая называется эллипсом, при этом Солнце не располагается в центре эллипса. В результате был сформулирован закон, который называется первым законом Кеплера. Каждая планета обращается вокруг Солнца по эллипсу, в одном из фокусов которого находится Солнце.

Как известно, эллипсом называется кривая, у которой сумма расстояний от любой точки Р до его фокусов есть величина постоянная. На рисунке обозначены: О — центр эллипса; S и S1 — фокусы эллипса; АВ — его большая ось. Половина этой величины (а), которую обычно называют большой полуосью, характеризует размер орбиты планеты. Ближайшая к Солнцу точка А называется перигелий, а наиболее удаленная от него точка В — афелий. Отличие эллипса от окружности характеризуется величиной его эксцентриситета: е = OS/OA. В том случае, когда эксцентриситет равен О, фокусы и центр сливаются в одну точку — эллипс превращается в окружность.

Примечательно, что книга, в которой в 1609 г. Кеплер опубликовал первые два открытых им закона, называлась «Новая астрономия, или Физика небес, изложенная в исследованиях движения планеты Марс. ». Оба этих закона, опубликованные в 1609 г., раскрывают характер движения каждой планеты в отдельности, что не удовлетворило Кеплера. Он продолжил поиски «гармонии» в движении всех планет, и спустя 10 лет ему удалось сформулировать третий закон Кеплера:

Т1^2 / T2^2 = a1^3 / a2^3

Квадраты звездных периодов обращения планет относятся между собой, как кубы больших полуосей их орбит. Вот что писал Кеплер после открытия этого закона: «То, что 16 лет тому назад я решил искать, наконец найдено, и это открытие превзошло все мои самые смелые ожидания. » Действительно, третий закон заслуживает самой высокой оценки. Ведь он позволяет вычислить относительные расстояния планет от Солнца, используя при этом уже известные периоды их обращения вокруг Солнца. Не нужно определять расстояние от Солнца каждой из них, достаточно измерить расстояние от Солнца хотя бы одной планеты. Величина большой полуоси земной орбиты — астрономическая единица (а. е.) — стала основой для вычисления всех остальных расстояний в Солнечной системе. Вскоре был открыт закон всемирного тяготения. Все тела во Вселенной притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними:

Читайте также:  Синтаксический разбор предложения весной солнце ласково пригревало северную землю 7 класс

где m1 и m2 — массы тел; r — расстояние между ними; G — гравитационная постоянная

Открытию закона всемирного тяготения во многом способствовали законы движения планет, сформулированные Кеплером, и другие достижения астрономии XVII в. Так, знание расстояния до Луны позволило Исааку Ньютону (1643 — 1727) доказать тождественность силы, удерживающей Луну при ее движении вокруг Земли, и силы, вызывающей падение тел на Землю. Ведь если сила тяжести меняется обратно пропорционально квадрату расстояния, как это следует из закона всемирного тяготения, то Луна, находящаяся от Земли на расстоянии примерно 60 ее радиусов, должна испытывать ускорение в 3600 раз меньшее, чем ускорение силы тяжести на поверхности Земли, равное 9,8 м/с. Следовательно, ускорение Луны должно составлять 0,0027 м/с2.

Сила, удерживающая Луну на орбите, есть сила земного притяжения, ослабленная в 3600 раз по сравнению с действующей на поверхности Земли. Можно убедиться и в том, что при движении планет, в соответствии с третьим законом Кеплера, их ускорение и действующая на них сила притяжения Солнца обратно пропорциональны квадрату расстояния, как это следует из закона всемирного тяготения. Действительно, согласно третьему закону Кеплера отношение кубов больших полуосей орбит d и квадратов периодов обращения T есть величина постоянная: Ускорение планеты равно:

a= u2/d =(2pid/T)2/d=4pi2d/T2

Из третьего закона Кеплера следует:

поэтому ускорение планеты равно:

Итак, сила взаимодействия планет и Солнца удовлетворяет закону всемирного тяготения и имеются возмущения в движении тел Солнечной системы. Законы Кеплера строго выполняются, если рассматривается движение двух изолированных тел (Солнце и планета) под действием их взаимного притяжения. Однако в Солнечной системе планет много, все они взаимодействуют не только с Солнцем, но и между собой. Поэтому движение планет и других тел не в точности подчиняется законам Кеплера. Отклонения тел от движения по эллипсам называют возмущениями. Возмущения эти невелики, так как масса Солнца гораздо больше массы не только отдельной планеты, но и всех планет в целом. Наибольшие возмущения в движении тел Солнечной системы вызывает Юпитер, масса которого в 300 раз превышает массу Земли.

Особенно заметны отклонения астероидов и комет при их прохождении вблизи Юпитера. В настоящее время возмущения учитываются при вычислении положения планет, их спутников и других тел Солнечной системы, а также траекторий космических аппаратов, запускаемых для их исследования. Но еще в XIX в. расчет возмущений позволил сделать одно из самых известных в науке открытий «на кончике пера» — открытие планеты Нептун. Проводя очередной обзор неба в поиске неизвестных объектов, Вильям Гершель в 1781 г. открыл планету, названную впоследствии Ураном. Спустя примерно полвека стало очевидно, что наблюдаемое движение Урана не согласуется с расчетным даже при учете возмущений со стороны всех известных планет. На основе предположения о наличии еще одной «заурановой» планеты были сделаны вычисления ее орбиты и положения на небе. Независимо друг от друга эту задачу решили Джон Адамс в Англии и Урбен Леверье во Франции. На основе расчетов Леверье немецкий астроном Иоганн Галле 23 сентября 1846 г. обнаружил в созвездии Водолея неизвестную ранее планету — Нептун. Это открытие стало триумфом гелиоцентрической системы, важнейшим подтверждением справедливости закона всемирного тяготения. В дальнейшем в движении Урана и Нептуна были замечены возмущения, которые стали основанием для предположения о существовании в Солнечной системе еще одной планеты. Ее поиски увенчались успехом лишь в 1930 г., когда после просмотра большого количества фотографий звездного неба был открыт Плутон.

Источник

Adblock
detector