Спектральная классификация звезд
Спектры звезд – это их паспорта с описанием всех звездных особенностей. Звезды состоят из тех же химических элементов, которые известны на Земле, но в процентном отношении в них преобладают легкие элементы: водород и гелий.
Спектры звезд – это их паспорта с описанием всех звездных особенностей.
По спектру звезды можно узнать ее светимость, расстояние до звезды, температуру, размер, химический состав ее атмосферы, скорость вращения вокруг оси, особенности движения вокруг общего центра тяжести.
Спектральный аппарат, устанавливаемый на телескопе, раскладывает свет звезды по длинам волн в полоску спектра. По спектру можно узнать, какая энергия приходит от звезды на различных длинах волн и оценить очень точно ее температуру. Цвет и спектр звезд связан с их температурой. В холодных звездах с температурой фотосферы 3000 К преобладает излучение в красной области спектра. В спектрах таких звездах много линий металлов и молекул. В горячих голубых звездах с температурой свыше 10000–15000 К большая часть атомов ионизована. Полностью ионизованные атомы не дают спектральных линий, поэтому в спектрах таких звездах линий мало.
На основе многочисленных снимков спектров звезд, полученных в США на Гарвардской обсерватории, в начале XX в. была разработана детальная классификация звездных спектров, которая легла в основу современной спектральной классификации.
В Гарвардской классификации спектральные типы (классы) обозначены буквами латинского алфавита: О, В, A, F, G, К и М. Поскольку в эпоху разработки этой классификации связь между видом спектра и температурой не была еще известна, то после установления соответствующей зависимости пришлось изменить порядок спектральных классов, который первоначально совпадал с алфавитным расположением букв.
Основная (гарвардская) спектральная классификация звёзд
Внутри класса звёзды делятся на подклассы от 0 (самые горячие) до 9 (самые холодные). В классе О подклассы начинаются с О5. Последовательность спектральных классов отражает непрерывное падение температуры звезд по мере перехода к все более поздним спектральным классам.
Подавляющее большинство звезд относится к последовательности от О до М. Эта последовательность непрерывна: характеристики звезд плавно изменяются при переходе от одного класса к другому.
Спектр. класс | Цвет | Темпер., K | Особенности спектра | Типичные звезды |
О | Голубой | 40000 | Интенсивные линии ионизированного гелия, линий металлов нет | Минтака |
В | Голубовато-белый | 20000 | Линии нейтрального гелия. Слабые линии Н и К ионизованного кальция | Спика |
А | Белый | 10000 | Линии водорода достигают наибольшей интенсивности. Видны линии Н и К ионизованного кальция, слабые линии металлов | Сириус, Вега |
F | Желтоватый | 7000 | Ионизированные металлы. Линии водорода ослабевают | Процион, Канопус |
G | Желтый | 6000 | Нейтральные металлы, интенсивные линии ионизованного кальция Н и К | Солнце, Капелла |
К | Оранжевый | 4500 | Линий водорода почти нет. Присутствуют слабые полосы окиси титана. Многочисленные линии металлов | Арктур, Альдебаран |
М | Красный | 3000 | Сильные полосы окиси титана и других молекулярных соединений | Антарес, Бетельгейзе |
Характерной особенностью звездных спектров также является наличие у них огромного количества линий поглощения, принадлежащих различным элементам. Тонкий анализ этих линий позволил получить особенно ценную информацию о природе наружных слоев звезд. Химический состав наружных слоев звезд, откуда к нам непосредственно приходит их излучение, характеризуется полным преобладанием водорода. На втором месте находится гелий, а количество остальных элементов достаточно невелико. Приблизительно на каждые десять тысяч атомов водорода приходится тысяча атомов гелия, около 10 атомов кислорода, немного меньше углерода и азота и всего лишь один атом железа. Примеси остальных элементов совершенно ничтожны. Без преувеличения можно сказать, что звезды состоят из водорода и гелия с небольшой примесью более тяжелых элементов.
Хорошим индикатором температуры наружных слоев звезды является ее цвет. Горячие звезды спектральных классов О и В имеют голубой цвет; звезды, сходные с нашим Солнцем (спектральный класс которого G2), представляются желтыми, звезды же спектральных классов К и М – красные. В астрофизике имеется тщательно разработанная и вполне объективная система цветов. Она основана на сравнении наблюдаемых звездных величин, полученных через различные строго эталонированные светофильтры. Количественно цвет звезд характеризуется разностью двух величин, полученных через два фильтра, один из которых пропускает преимущественно синие лучи («В»), а другой имеет кривую спектральной чувствительности, сходную с человеческим глазом («V»). Техника измерений цвета звезд настолько высока, что по измеренному значению B-V можно определить спектральный класс звезды с точностью до подкласса. Для слабых звезд анализ цветов – единственная возможность их спектральной классификации.
Гарвардская спектральная классификация основана на наличии или отсутствии, а также относительной интенсивности определенных спектральных линий. Кроме перечисленных в таблице основных спектральных классов, для относительно холодных звезд имеются еще классы N и R (полосы поглощения молекул углерода C2, циана CN и окиси углерода CO), класс S (полосы окисей титана TiO и циркония ZrO), а также для самых холодных звезд – класс L (полоса гидрида хрома CrH, линии рубидия, цезия, калия и натрия). Для объектов субзвездного типа – «коричневых карликов», промежуточных по массе между звездами и планетами, недавно введен специальный спектральный класс T (полосы поглощения воды, метана и молекулярного водорода).
Спектральные классы О, В, А часто называют горячими или ранними, классы F и G – солнечными, а классы К и М – холодными или поздними спектральными классами.
Так как одному гарвардскому спектральному классу могут соответствовать звёзды с одинаковой температурой фотосферы, но различных классов светимости (то есть отличающимися на порядки светимостями), то с учётом светимости была разработана йеркская спектральная классификация (называемая ещё МКК – по инициалам её авторов У. Моргана, Ф. Кинана и Э. Келмана).
В соответствии с этой классификацией звезде приписывают гарвардский спектральный класс и класс светимости.
Различают следующие классы светимости
Класс | Название | Абс. звёздные величины MV |
0 | Гипергиганты | |
Ia+ | Ярчайшие сверхгиганты | −10 |
Ia | Яркие сверхгиганты | −7,5 |
Ib | Нормальные сверхгиганты | −4,7 |
II | Яркие гиганты | −2,2 |
III | Нормальные гиганты | +1,2 |
IV | Субгиганты | +2,7 |
V | Карлики главной последовательности | +4 |
VI | Субкарлики | +5-6 |
VII | Белые карлики | +13-15 |
Таким образом, если гарвардская классификация определяет абсциссу диаграммы Герцшпрунга – Рассела, то йеркская – положение звезды на этой диаграмме. Дополнительным преимуществом йеркской классификации является возможность по виду спектра звезды оценить её светимость и, соответственно, по видимой величине – расстояние (метод спектрального параллакса).
Солнце, будучи жёлтым карликом, имеет йеркский спектральный класс G2V.
Звёзды одинаковых (или близких) классов светимости образуют на диаграмме Герцшпрунга – Рассела последовательности (ветви), например, ветвь красных гигантов или белых карликов.
Диаграмма Герцшпрунга-Рассела
(в разных представлениях)
Диаграмма была предложена астрономами Эйнаром Герцшпрунгом и Генри Расселом независимо друг от друга примерно в 1910 году.
Используя диаграмму, астрономы способны проследить жизненный цикл звезд, от молодых горячих протозвезд, через основные фазы развития, вплоть до фазы умирающего красного гиганта. Диаграмма также показывает зависимость температуры и цвета звезд от различных этапов их жизненного цикла.
На диаграмме Герцшпрунга-Рассела можно увидеть диагональную линию, ведущую с левого верхнего угла вправо вниз. Она известна как Главная Последовательность и большинство звезд проходят именно эти этапы в своем развитии. В целом, когда температура звезды уменьшается, падает и светимость звезды. На диаграмме также можно увидеть ответвление, которое находится выше 100 ед. светимости. Это красные гиганты, которые находятся в конце своего жизненного цикла. Они могут быть одновременно яркими и относительно холодными, поскольку они очень большие. Обычно эта стадия длится несколько миллионов лет.
Наклонные пунктирные линии на нижней диаграмме определяют размеры звезд в радиусах Солнца.
Источник
Какого цвета Солнце на самом деле?
Казалось бы, вопрос, какого цвета Солнце, совсем глупый. Все знают, что оно жёлтое. Таким мы видим его на небе, так его изображают на разных картинках и схемах, да и на фотографиях видно. Но на самом деле всё сложнее, чем кажется. Какого цвета Солнце на самом деле?
Солнце жёлтое?
Солнце относится к классу жёлтых карликов спектрального класса G2V. К этому типу относятся звезды с температурой поверхности в пределах 5000 – 6000 К и имеющие размеры и массу, сравнимые с солнечными. Жёлтые карлики всегда изображают жёлтыми, красные – красными и т.д.
Если посмотреть на небо, когда Солнце не слишком высоко и не очень яркое, отчётливо видно, что оно жёлтое. Даже дети подсознательно это замечают и рисуют его именно жёлтым карандашом.
С этой точки зрения Солнце – жёлтое. Ведь не доверять собственным глазам кажется глупым, тем более, в этом легко убедиться лично.
Солнце белое?
Если пропустить солнечный свет через призму, он разложится на спектр, и мы увидим области разного цвета. То есть, солнечный свет состоит из электромагнитных волн всего видимого спектра, а свет мы воспринимаем именно как электромагнитные волны с разной длиной волны. Стеклянная призма преломляет их по-разному, поэтому видно их разделение. Вы знаете это из курса школьного физики.
В солнечном свете есть электромагнитные волны всего видимого спектра, от фиолетовых до красных. Все вместе они дают белый свет. На снимках, сделанных в космосе, когда Солнце попадает в кадр, видно, что оно именно белого цвета.
Да и как иначе, если оно излучает в самых разных диапазонах, и видимый свет – лишь малая часть излучения. Притом доля желтого света в нём не больше, чем других. При температуре поверхности в 5800 К Солнце и должно быть белым.
Солнце зелёное?
Хотя Солнце и излучает в самых разных диапазонах, отчего в сумме получается белый свет, но излучения с длиной волны в 500 нм получается больше в общей сумме, а это зелёный свет. Поэтому среди всех цветов зелёный должен преобладать, и мы должны видеть Солнце в зелёном оттенке.
Думаете, это совсем глупость? На самом деле зелёный цвет Солнца можно видеть. Вы наверняка слышали про «зелёный луч», который можно иногда видеть на закате, перед тем, как Солнце скроется за горизонтом. Это явление можно увидеть в любом месте, но чаще встречается на море. Есть роман «Зелёный луч», и много фотографий, вот одна из них:
Иногда на закате Солнце бросает зелёный луч.
Иногда небо и в самом деле становится зелёным.
Какого цвета Солнце на самом деле
Так можно совсем запутаться – видим Солнце желтым или зелёным, а в космосе оно выглядит белым. Где правда и какого цвета Солнце на самом деле? Ответ прост – Солнце белое, именно потому что излучает во всём видимом спектре. То, что зеленого чуть больше, особой роли не играет и не заметно в обычных условиях.
Но почему мы видим Солнце желтым? Потому что мы находимся на планете Земля, под слоем атмосферы, и смотрим через неё. Атмосфера рассеивает фиолетовую и синюю часть спектра, поэтому небо голубое, а цвет Солнца выглядит более жёлтым, так как красная часть спектра в атмосфере рассеивается хуже. А к ней близко находится и оранжевая и желтая часть.
На закате Солнце выглядит и вовсе красным, потому что лишь излучение с большей длиной волны может пробиться через толстый слой атмосферы. Ведь, когда Солнце низко над горизонтом, свет от него к нам идет не сверху, где воздушная прослойка тоньше, а под углом, и преодолевает толстый слой воздуха.
Причём воздух этот вовсе не так чист, как кажется – в нём много пыли, водяных паров и прочих включений. Поэтому, чем толще воздушная прослойка, тем сильнее она поглощает и преломляет свет. И Солнце на закате выглядит красным и не очень ярким – иногда на него даже можно спокойно смотреть.
Иногда условия преломления складываются идеально, и Солнце может выглядеть зелёным – испустить тот самый зелёный луч. Длится это недолго и бывает нечасто.
Зеленая часть спектра, хотя доля её в общем излучении Солнца велика, также рассеивается в атмосфере, придавая небу не чисто синий цвет, а с уклоном к зелёному. Мы не видим его зелёным лишь потому, что воспринимаем не отдельные цвета, а всю сине-зелёную часть спектра, где синий и фиолетовый в сумме преобладают. И когда мы смотрим на дневное небо, работают колбочки сетчатки глаза, восприимчивые и к синему, и к зелёному, и к жёлтому цвету. И небо выглядит голубым.
А настоящий цвет Солнца – белый. Именно таким оно и выглядит, если на него смотреть из космоса, где атмосфера не мешает. В пустыне белый цвет Солнца тоже хорошо виден — воздух там сухой, в нём мало водяных паров, поэтому преломление и искажение света происходит не так сильно.
В пустынной местности Солнце белое.
На рисунках и схемах его намеренно изображают жёлтым, так привычно. На фотографиях, сделанных в телескоп через фильтр, оно выглядит жёлтым по той же причине, что и без телескопа – из-за влияния атмосферы. К тому же, часто фотографии делают с применением различных цветных фильтров, чтобы повысить контраст и выделить детали.
Источник