ДеталиКак один телескоп поможет людям переосмыслить мир
Зачем мы тратим миллиарды на космос
На прошлой неделе исполнилось 25 лет со дня запуска телескопа «Хаббл», а NASA подтвердили дату запуска преемника «Хаббла», телескопа имени Джеймса Уэбба, который выведут в космос в октябре 2018 года. Look At Me объясняет, зачем нужны телескопы, стоящие миллиарды долларов, и как они устроены.
Как появились телескопы?
Первый телескоп появился в начале XVII века: сразу несколько изобретателей одновременно придумали подзорные трубы. Эти трубы были основаны на свойствах выпуклой линзы (или, как её ещё называют, вогнутого зеркала), выполнявшей в трубе роль объектива: линза собирает в фокус лучи света, и получается увеличенное изображение, на которое можно смотреть через окуляр, находящийся на другом конце трубы. Важная для телескопов дата — 7 января 1610 года; тогда итальянец Галилео Галилей впервые направил подзорную трубу в небо — и именно так превратил её в телескоп. Телескоп Галилея был совсем небольшим, чуть больше метра в длину, а диаметр объектива был 53 мм. С тех пор телескопы постоянно увеличивались в размерах. По-настоящему большие телескопы, находящиеся в обсерваториях, начали строить в XX веке. Самый большой оптический телескоп на сегодня — Большой Канарский телескоп, в обсерватории на Канарских островах, диаметр объектива которого — целых 10 м.
Все телескопы устроены одинаково?
Нет. Основной тип телескопов — оптические, в них используют либо линзу, либо вогнутое зеркало или серию зеркал, либо зеркало и линзу вместе. Все эти телескопы работают с видимым светом — то есть смотрят на планеты, звёзды и галактики примерно так же, как на них смотрел бы очень зоркий человеческий глаз. Все объекты в мире имеют излучение, и видимый свет — это лишь маленькая доля спектра этих излучений. Смотреть на космос только через него — даже хуже, чем видеть мир вокруг в чёрно-белом свете; так мы теряем очень много информации. Поэтому существуют телескопы, работающие по иным принципам: например, радиотелескопы, ловящие радиоволны, или телескопы, ловящие гамма-лучи — их используют для того, чтобы наблюдать за самыми горячими объектами в космосе. Ещё есть ультрафиолетовые и инфракрасные телескопы, они хорошо подходят для обнаружения новых планет за пределами Солнечной системы: в видимом свете ярких звёзд невозможно разглядеть крошечные планеты, вращающиеся вокруг них, а вот в ультрафиолете и инфракрасном свете это сделать намного проще.
Зачем вообще нужны телескопы?
Хороший вопрос! Надо было задать его раньше. Мы отправляем аппараты в космос и даже на другие планеты, собираем на них информацию, но по большей части астрономия — уникальная наука, потому что она изучает объекты, к которой у неё нет прямого доступа. Телескоп — лучший инструмент, чтобы получать информацию о космосе. Он видит волны, не доступные человеческому глазу, мельчайшие детали, а также записывает свои наблюдения — потом с помощью этих записей можно замечать изменения на небе.
Благодаря современным телескопам мы имеем неплохое представление о звёздах, планетах и галактиках и даже можем обнаружить гипотетические частицы и волны, ранее не известные науке: например, тёмную материю (это загадочные частицы, из которых состоит 73% Вселенной) или гравитационные волны (их пытаются обнаружить с помощью обсерватории LIGO, состоящей из двух обсерваторий, которые находятся на расстоянии 3000 км друг от друга). Лучше всего для этих целей с телескопами поступать, как со всеми другими аппаратами, — отправлять их в космос.
Зачем отправлять телескопы в космос?
Поверхность Земли — не лучшее место для наблюдений за космосом. Наша планета создаёт очень много помех. Во-первых, воздух в атмосфере планеты работает как линза: он искажает свет от небесных объектов в случайном, непредсказуемом порядке — и искажает то, как мы их видим. Кроме этого, атмосфера поглощает многие виды излучения: например, инфракрасные и ультрафиолетовые волны. Для того чтобы обойти эти помехи, телескопы отправляют в космос. Правда, это очень дорого, поэтому так делают редко: за всю историю мы отправили около 100 телескопов разных размеров в космос — на самом деле это мало, даже больших оптических телескопов на Земле в несколько раз больше. Самый известный космический телескоп — «Хаббл», а телескоп Джеймса Уэбба, который должны запустить в 2018-м, станет чем-то вроде его последователя.
Насколько это дорого?
Мощный космический телескоп — это очень дорого. На прошлой неделе исполнилось 25 лет со дня запуска «Хаббла», самого известного космического телескопа. На него за всё время выделили около $10 млрд; часть этих денег — на ремонт, ведь «Хаббл» приходилось регулярно чинить (это перестали делать в 2009 году, но телескоп до сих пор работает). Вскоре после запуска телескопа произошла глупая история: первые изображения, сделанные им, были гораздо худшего качества, чем ожидалось. Оказалось, что из-за крошечной ошибки в расчётах зеркало «Хаббла» было недостаточно ровным, и пришлось отправить целую команду астронавтов, чтобы его починить. Это стоило около $8 млн. Цена телескопа Джеймса Уэбба может меняться и, скорее всего, будет расти ближе к запуску, но пока это около $8 млрд — и он стоит каждого цента.
Чего особенного
в телескопе имени Джеймса Уэбба?
Это будет самый впечатляющий телескоп в истории человечества. Проект задуман ещё в середине 90-х, и сейчас он наконец подходит к завершающей стадии. Телескоп улетит на 1,5 млн км от Земли и встанет на орбиту вокруг Солнца, а точнее на вторую точку Лагранжа от Солнца и Земли— это такое место, где гравитационные силы двух объектов балансируются, и поэтому третий объект (в данном случае — телескоп) может оставаться неподвижным. Телескоп Джеймса Уэбба — слишком большой, чтобы влезть в ракету, поэтому он долетит в сложенном виде, а в космосе раскроется, как цветок-трансформер; посмотрите вот на это видео, чтобы понять, как это произойдёт.
После этого он сможет заглянуть дальше, чем любой телескоп в истории: на 13 млрд световых лет от Земли. Поскольку свет, как можно догадаться, путешествует со скоростью света, объекты, которые мы видим, находятся в прошлом. Грубо говоря, когда вы смотрите на звезду через телескоп, то видите её, как она выглядела десятки, сотни, тысячи и так далее лет назад. Поэтому телескоп Джеймса Уэбба увидит первые звёзды и галактики такими, какими они были после Большого взрыва. Это очень важно: мы лучше поймём, как формировались галактики, появлялись звёзды и планетарные системы, сможем лучше понять происхождение жизни. Возможно, телескоп Джеймса Уэбба даже поможет нам найти внеземную жизнь. Есть одно но: во время миссии очень много чего может пойти не так, и, поскольку телескоп будет очень далеко от Земли, послать его починить, как это было с «Хабблом», будет невозможно.
Какой во всём этом практический смысл?
Это вопрос, который часто задаётся астрономии, особенно учитывая, сколько на неё тратится денег. На него можно дать два ответа: во-первых, не у всего, особенно у науки, должен быть понятный практический смысл. Астрономия и телескопы помогают нам лучше понять место человечества во Вселенной и вообще устройство мира. Во-вторых, практическая польза у астрономии всё-таки есть. Астрономия напрямую связана с физикой: понимая астрономию, мы гораздо лучше понимаем физику, ведь есть физические феномены, которые невозможно наблюдать на Земле. Скажем, если астрономы докажут существование тёмной материи, это очень сильно повлияет на физику. Кроме того, многие технологии, придуманные для космоса и астрономии, используют и в повседневной жизни: можно вспомнить спутники, которые сейчас используются для всего, от телевидения до GPS-навигации. Наконец, астрономия будет очень важна в будущем: для выживания человечеству понадобится добывать энергию из Солнца и ископаемые из астероидов, расселяться по другим планетам и, возможно, общаться с инопланетными цивилизациями — всё это будет невозможно, если мы не будем развивать астрономию и телескопы уже сейчас.
Источник
Космические орбитальные телескопы
1. «Хаббл» — космический телескоп (Hubble) назван в честь американского астрофизика Э.Хаббла , запущен 24.04.1990 года. Совместный проект орбитальной обсерватории NASA и ESA, который развивают США и Европа. Оснащён широкоугольной камерой, спектрографом, высокоскоростным фотометром. К телескопу, уже на орбите, было отправлено четыре миссии для ремонта и обслуживания.
Подробнее читайте: Космический телескоп «Хаббла «.
2. «Спитцер» — космический телескоп (Spitzer) работает в инфракрасном диапазоне. Проект NASA, назван в честь Л.Спитцера , запущен 25.08.2003 года. Инфракрасное излучение, поглощаемое атмосферой Земли , стало доступным для этого телескопа, благодаря ему есть возможность фиксировать слабосветящееся вещество, внесолнечные планеты и молекулярные облака. Благодаря «Спитцеру»мы увидели галактический центр.
Подробнее читайте: Космический телескоп «Спитцер «.
3. «Кеплер» — Космический телескоп (Kepler) предназначенный для поиска планет в других солнечных системах. Назван в честь немецкого астронома и математика И.Кеплера , запущен 06.03.2009 года. «Кеплер» открыл множество экзопланет , из более 2500 кандидатов в планеты, около 150 оказались подтверждёнными, в их числе есть и землеподобные экзопланеты . В мае 2013 года телескоп вышел из строя и судьба его пока под вопросом.
Подробнее читайте: Космический телескоп «Кеплер «.
4. «WISE» — космический телескоп для обзора пространства в инфракрасном диапазоне, запущен 14.12.2009 года. WISE ищет ультраяркие инфракрасные галактики, астероиды и кометы , которые приближаются к Земле. Криогенный афокальный телескоп с четырьмя камерами, которые работают в разных диапазонах и охлаждаются жидким водородом, для предотвращения цифрового шума.
Подробнее читайте: Космический телескоп «WISE «.
5. «Гершель» — космический телескоп (Hershel) разработанный Европейским космическим агентством, запущен 14.05.2009 года. Назван в честь великого астронома У.Гершеля . Находится на гелиоцентрической орбите и изучает состав атмосферы объектов Солнечной системы, формирование галактик и звёзд.
Подробнее читайте: Космический телескоп «Гершель «.
6. «Чандра» — космический телескоп (Chandra) является рентгеновской лабораторией. Назван в честь астрофизика Чандрасекара , был запущен NASA 23.07.1999 года. Оснащён камерой высокого разрешения, спектрометрами. Обсерватория разрабатывалась ещё в 1976 году, но из-за урезания бюджета, пришлось сократить оснащение телескопа.
Подробнее читайте: Космический телескоп «Чандра «.
7. «Планк» — космический телескоп (Plank) создан для изучения реликтового излучения . Запущен 14.05.2009 года Европейским космическим агентством. Спутник оснащён телескопом системы Грегори . Занимается наблюдением Млечного пути , созданием каталога скоплений галактик, изучением Солнечной системы , комет и астероидов .
Подробнее читайте: Космический телескоп «Планк» .
8. «Corot» — космический телескоп (Corot) создан усилиями ESA, Франции и Бразилии ля поиска экзопланет и строения звёзд . Запущен 27.12.2006 года. Оснащён афокальным телескопом и широкоугольной камерой с четырьмя ПЗС-матрицами. Телескоп использует транзитный метод поиска планет, это когда, планета проходит перед своей звездой и затмевает её — фиксируется снижение яркости.
Подробнее читайте: Космический телескоп «Corot «.
9. «Galex» — космический телескоп (Galex) изучает эволюцию галактик в ультрафиолетовом диапазоне. Был запущен 28.04.2003 года. Исследовал несколько сотен тысяч галактик с последующим составлением обзорных снимков неба. Телескоп был способен заглянуть вглубь пространства на 10 млрд. лет.
Подробнее читайте: Космический телескоп «Galex».
10. «GLAST(Fermi)» — космический телескоп (Fermi) создан для изучения космического пространства в диапазоне гамма излучения. Назван в честь физика Э.Ферми , запущен 11.06.2008 года. Кроме этого телескоп исследует физические процессы в ядрах активных галактик и пульсары .
Подробнее читайте: Космический телескоп «GLAST «.
Буду Вам крайне признателен, если Вы оставите комментарий и добавите статью в социальные сети, нажав на кнопки ниже. Благодарю!
Источник
Журнал «Все о Космосе»
История космических телескопов
Основоположники космонавтики, обосновывая в первой половине ХХ века необходимость выхода человечества во внеземное пространство, среди прочих практических целей называли развитие астрономии. Они писали: наблюдение небесных тел затруднено колебаниями атмосферы и непредсказуемой погодой, поэтому вынесение телескопов за пределы планеты позволит на порядки увеличить их «дальнозоркость».
Идею космических обсерваторий выдвигали Константин Циолковский в статье «Свободное пространство» (1883), Герман Оберт в работе «Ракета в межпланетное пространство» (1923) и Макс Валье в книге «Полёт в мировое пространство» (1924). После этого астрономические наблюдения с околоземной орбиты стали часто описывать в научно-популярной литературе и фантастике: достаточно вспомнить роман Александра Беляева «Звезда КЭЦ» (1936).
Впрочем, первые попытки провести наблюдения на больших высотах предпринимались задолго до начала космических полётов. Например, известно, что во время полного солнечного затмения 19 июня 1936 года московский астроном Пётр Куликовский поднялся на субстратостате, чтобы сфотографировать корону Солнца. Для американской астрономии практическим шагом к орбитальным телескопам стала программа «Стратоскоп» (Stratoscope), развитием которой руководил знаменитый астрофизик Мартин Шварцшильд.
Первый телескоп с диаметром главного зеркала 30,5 см, созданный в рамках программы, поднялся в воздух 22 августа 1957 года и достиг высоты 25,3 км. Там блок приборов начал автоматическую съёмку нашего светила в высоком разрешении, а киноплёнку затем проявили на земле. Результат эксперимента впечатлил учёных, и программа получила развитие: изучение Солнца и других объектов стратоскопами продолжалось до 1971 года, после чего они уступили место более совершенным инструментам.
Полёт Stratoscope I в сентябре 1957 года
Полёт Stratoscope I в сентябре 1957 года
Наблюдатели в космосе
Практическая космонавтика успешно развивалась, и инженеры сделали следующий шаг: начали проектировать орбитальные телескопы. Американские специалисты разработали серию спутников под названием ОАО (Orbital Astronomical Observatory), которые могли наводиться на любое небесное тело и с высочайшей точностью удерживать его в «поле зрения» приборов. Спутник ОАО-1, выведенный в космос 8 апреля 1966 года, не смог раскрыть солнечные батареи и начать программу наблюдений.
Зато ОАО-2 (Stargazer), стартовавший в декабре 1968 года, успешно проработал больше четырёх лет. Последний аппарат этой серии, ОАО-3, названный «Коперником» (Copernicus), был запущен в августе 1972 года, а эксплуатировали его девять лет.
В составе орбитальной станции Skylab (Sky Laboratory) работала большая многоспектральная обсерватория ATM (Apollo Telescope Mount). С её помощью астронавты опять же изучали Солнце. Их наблюдения заставили астрономов пересмотреть отношение к нашему светилу: раньше считалось, что это более или менее спокойное небесное тело с однородной гелиосферой, а на самом деле структура его газовой оболочки оказалась сложной и изменчивой. Кроме того, ATM использовалась для слежения за кометой Когоутека — результаты этих наблюдений помогли подтвердить теорию о том, как именно за пределами Солнечной системы формируются кометы.
Советские учёные обрели возможность вести астрономические наблюдения в космосе с началом эксплуатации станций «Салют». На «Салюте-1» был установлен ультрафиолетовый телескоп «Орион», разработанный Бюраканской астрофизической обсерваторией. Космонавты использовали его, чтобы получить спектрограммы Веги и Агены (беты Центавра) — благодаря этому удалось уточнить теоретическую модель фотосферы высокотемпературных звёзд.
Телескоп «Орион-2» отправился в космос на борту корабля «Союз-13» в декабре 1973 года. Экипажу удалось снять около 10 тысяч спектрограмм тусклых или далёких звёзд — с блеском более десятой звёздной величины. На обработку полученной информации потребовалось целое десятилетие: каталог, составленный по данным «Ориона-2», увидел свет только в 1984 году.
На «Салюте-4» использовался солнечный телескоп ОСТ, автоматическая система наведения которого оказалась бракованной. Космонавты перешли на ручное управление — почти как в старых фантастических романах. Кроме того, Алексей Губарев и Георгий Гречко впервые в истории провели операцию по орбитальному ремонту телескопа — 2 февраля 1975 года они напылили на его зеркало алюминий, что значительно улучшило качество изображения. Следующему экипажу «Салюта-4» 18 июня повезло наблюдать за вспышкой на Солнце и за появлением гигантского протуберанца. «Контрольную» съёмку в видимой части спектра вели сотрудники Крымской астрофизической обсерватории.
На «Салюте-6» и «Салюте-7» тоже устанавливали телескопы: субмиллиметровый БСТ-1М с полутораметровым зеркалом, радиотелескоп КРТ-10, гамма-телескоп «Елена» и рентгеновский телескоп РТ-4М. В то же время советские учёные научились конструировать независимые от пилотируемых кораблей и станций обсерватории, управляемые с наземных пунктов. В 1980-х годах они запустили спутники «Астрон», «Гранат» и «Гамма» для исследований в рентгеновском и гамма-диапазонах, а к орбитальному комплексу «Мир» пристыковали астрофизический модуль «Квант» с обсерваторией «Рентген». К сожалению, с распадом СССР многие перспективные отечественные проекты были заморожены.
Развитие орбитальной астрономии затруднялось из-за несовершенства систем, с помощью которых управляли телескопами, наводили их на объекты и передавали данные на Землю. Зато с появлением современных цифровых технологий появилась возможность создавать космические обсерватории с большим сроком «жизни» и высокой разрешающей способностью.
Самую большую известность среди таких обсерваторий получил американский телескоп «Хаббл» (Hubble Space Telescope), который был доставлен на орбиту 24 апреля 1990 года в грузовом отсеке шаттла «Дискавери». Имея главное зеркало диаметром 2,4 метра, «Хаббл» оставался самым большим оптическим инструментом в космосе, пока в 2009 году Европейское космическое агентство не запустило туда же инфракрасный телескоп «Гершель» (Herschel Space Observatory) с диаметром зеркала 3,5 метра.
История «Хаббла» не обошлась без проблем. Начав работу в космосе, он выдал изображение хуже, чем такой же по размерам наземный телескоп. Причиной искажения стала ошибка, допущенная при изготовлении главного зеркала. Проект мог полностью провалиться, если бы специалисты, наученные горьким опытом поломок на предыдущих обсерваториях, не предусмотрели возможность ремонта силами астронавтов. Фирма Kodak быстро изготовила второе зеркало, однако заменить его в космосе было невозможно, и тогда инженеры предложили изготовить космические «очки» — систему оптической коррекции COSTAR из двух особых зеркал. Чтобы установить её на «Хаббл», 2 декабря 1993 года на орбиту отправился шаттл «Индевор». Астронавты совершили пять сложнейших выходов в открытый космос и вернули дорогостоящий телескоп в строй.
Позднее астронавты летали к «Хабблу» ещё четыре раза и значительно продлили срок его эксплуатации. Последнее техобслуживание проходило с 11 по 24 мая 2009 года, в рамках миссии шаттла «Атлантис».
Сегодня телескоп, которому почти тридцать лет, начинает ломаться. В октябре прошлого года пресс-служба NASA сообщила, что отказал один из гироскопов системы ориентации, из-за чего «Хаббл» на три недели перевели в «безопасный режим» (отключается исследовательское оборудование, работает только служебное).
8 января выключилась широкоугольная камера Wide Field Camera 3; на поиск неисправности и её устранение ушло девять дней. 28 февраля из-за ошибки в программном коде несколько дней не работала многоспектральная камера ACS (Advanced Camera for Surveys). Пока что наземная команда обслуживания справляется с накапливающимися проблемами, но вряд ли телескоп продержится долго.
Сейчас планируется, что «Хаббл» будет продолжать работу до 30 июня 2021 года, что и так намного больше его запаса прочности. Потом телескоп попытаются управляемо свести с орбиты и затопить в океане. Впрочем, в настоящее время администрация президента Дональда Трампа рассматривает другой вариант: корпорация Sierra Nevada предлагает отправить к «Хабблу» корабль-ремонтник.
С другой стороны, своей очереди давно ждёт большой инфракрасный телескоп «Уэбб» (James Webb Space Telescope) с составным зеркалом диаметром 6,5 метров: его как раз планируют запустить 30 марта 2021 года. В числе прочих задач он будет искать свет самых древних звёзд и галактик, изучать их эволюцию и формирование скоплений вещества в юной Вселенной. Кроме того, «Уэбб» поможет искать относительно холодные планеты у соседних звёзд — но, самое главное, снимет спектры их атмосфер. Тогда мы сможем увереннее говорить о царящих там природных условиях, а может быть, даже зафиксируем признаки жизни — биосигнатуры.
Сегодня раздел астрономии, занимающийся изучением экзопланет, переживает бурный расцвет. Если раньше массивные твёрдые тела в звёздных системах находили по косвенному признаку — гравитационному влиянию на собственное светило, — то теперь популярнее всего стал транзитный метод, то есть наблюдение за микрозатмениями звезды. Разумеется, он требует высочайшей точности измерений, и лучший результат получается именно у космических телескопов, поскольку изменение блеска далёких светил сложно различить за колебаниями беспокойной земной атмосферы.
Стандарт в этой области исследований задал американский телескоп «Кеплер» (Kepler Telescope), запущенный 7 марта 2009 года. Он мог наблюдать одновременно до 100 тысяч звёзд, собирая статистические данные по экзопланетам. За три года работы «Кеплеру» удалось обнаружить 4700 кандидатов в экзопланеты; свыше 2600 из них подтвердились. Многие открытые миры оказались сопоставимы по размерам с Землёй. Также удалось доказать существование систем сразу с несколькими экзопланетами, в том числе у двойных звёзд.
Нашлись даже землеподобные миры в «зонах обитаемости», то есть на таком расстоянии от звезды, которое удобно для возникновения жизни. Например, планета Kepler-438b, расположенная от нас на расстоянии 470 световых лет, считается сегодня самой подходящей для возникновения и развития иной жизни. К сожалению, работа с «Кеплером» сопровождалась техническими сбоями и была прекращена в октябре прошлого года.
В апреле 2018 года компания SpaceX запустила в космос телескоп TESS (Transiting Exoplanet Survey Satellite): в отличие от «Кеплера», нацеленного на дальний космос, он будет искать экзопланеты в радиусе до 200 световых лет от нас. Астрономы предполагают, что TESS откроет как минимум 20 тысяч новых миров, среди которых будет не меньше тысячи землеподобных.
Готовятся к запуску и другие космические инструменты для изучения экзопланет. В 2019 году на орбиту отправится телескоп «Хеопс» (CHEOPS)/
в 2026 году — телескоп «Платон» (PLATO), в 2035 году — мощная обсерватория ATLAST (Advanced Technology Large-Aperture Space Telescope). Работая вместе с наземными инструментами, они смогут определить характеристики ближайших экзопланет — и даже составить карты их поверхности!
Галактическая астрономия тоже не стоит на месте. В апреле 2018 года европейцы опубликовали предварительные результаты наблюдений телескопа Gaia, запущенного пять лет назад. На их основе удалось построить детализированную трёхмерную карту Млечного Пути, в которой содержатся сведения о точном расположении, характеристиках и передвижении 1,7 млрд звёзд. Кроме того, «Gaia» собрала информацию о 14 тысячах астероидов Солнечной системы. Телескоп будет передавать данные на Землю, обогащая наши знания о ближнем и дальнем космосе, до конца 2020 года.
На фоне столь эффектных достижений российской орбитальной астрономии пока нечем похвастаться. Сейчас на орбите находится только телескоп «Радиоастрон» (Спектр-Р), запущенный 18 июля 2011 года: он занимался изучением чёрных дыр, нейтронных звёзд и других объектов, излучающих в электромагнитном спектре. Хотя гарантийный срок телескопа истёк в 2016 году, до недавнего времени он работал исправно и потерял управляемость только 10 января 2019 года, а данные передаёт до сих пор. Попытки восстановить двустороннюю связь учёные собираются повторять до середины мая.
Планировалось, что в ближайшие годы к нему присоединятся обсерватории «Спектр-РГ», «Спектр-УФ» и «Спектр-М» («Миллиметрон») с криогенным телескопом диаметром 10 метров, который улавливает излучение в миллиметровом и инфракрасном диапазонах. Работая вместе, три аппарата могли бы составить самую подробную в истории карту внегалактической Вселенной.
Однако в последнее время появляются сообщения, что финансирование двух последних проектов собираются сильно урезать. Хочется надеяться, что это «ложная тревога», потому что в таком случае наша наука останется без современных инструментов по изучению дальнего космоса. А изучать его необходимо, ведь орбитальные обсерватории XXI века помогают учёным не только по-новому вглядываться в бездны пространства, но и делать более уверенные прогнозы о будущей эволюции космоса, от которых в конечном итоге зависит вопрос выживания всего человечества.
По материалам Антона Первушина
Дорогие друзья! Желаете всегда быть в курсе последних событий во Вселенной? Подпишитесь на рассылку оповещений о новых статьях, нажав на кнопку с колокольчиком в правом нижнем углу экрана ➤ ➤ ➤
Добавить комментарий Отменить ответ
Для отправки комментария вам необходимо авторизоваться.
Источник