Меню

Как выглядит космос будущий

Каким будет освоение космоса в 2069 году?

В 2069 году мир будет отмечать столетие первой посадки на Луну. Но каким будет наш мир через 50 лет? Если отбросить в сторону пессимистичные прогнозы ученых, мы можем представить себе удивительное будущее человечества — продолжение эпохи освоения космоса. Уже сегодня в планах специалистов создание базы на Луне, потенциальная добыча на лунной поверхности минералов и даже воды, которую можно будет превратить в ракетное топливо. Однако самое интересное заключается в том, что Луна может стать отправной точкой для будущих космических полетов. Но куда нам отправиться?

Каким окажется космический корабль будущего?

Луна — путь к далеким мирам

Начнем с вопроса о том, почему на повестке дня стоит возвращение человека на Луну? Казалось бы, подобные путешествия довольно дорогое удовольствие, к тому же, не очень понятно чем там можно будет заняться, ведь на Луне не самые подходящие условия для комфортного времяпрепровождения. Возможно, дело в том, что Луна считается прекрасным местом для запуска миссий в дальний космос. В конечном итоге все сводится к тому, что самая сложная часть любого космического путешествия — это вывод ракеты из гравитации Земли.

Алекс Элери, доцент кафедры космической робототехники и космических технологий в университете Карлтона в Канаде, рассказал в интервью изданию The Conversation о различных способах использования слабой гравитации Луны. Один из способов — возведение новой космической станции, которая вращается вокруг спутника Земли — подобные проекты как раз планируют NASA, Роскосмос и другие международные космические компании. Другой способ — построить базу на поверхности Луны, используя лунные ресурсы. Это довольно амбициозный способ, но в конечном итоге мог бы стать более безопасным и устойчивым. Еще больше новостей об освоении космоса читайте на нашем канале в Яндекс.Дзен.

Возвращение на Луну может оказаться хорошей идеей

На самом деле на Луне много полезного: алюминий, титан, кремний, керамика, реагенты и.т.д., из которых можно построить целую инфраструктуру с помощью робототехники. Сегодня многие специалисты считают, что истинная ценность освоения Луны заключается в ее использовании в качестве трамплина на Марс.

Но не только. Самые смелые предположения касаются будущих путешествий к спутникам Юпитера и Сатурна — лунах, которые могут скрывать в себе жизнь. Но не стоит забывать о том, что Европа или Энцелад — это ледяные миры, и жизнь там присутствует скорее всего в виде микроорганизмов глубоко под поверхностью лун.

Удастся ли нам покинуть Землю?

Когда речь заходит о поиске жизни в других местах Солнечной системы, большое беспокойство вызывает то, что люди (и роботы, созданные людьми) могут загрязнять чужеродные экосистемы. В то же время футурологи и некоторые ученые, в числе которых был британский физик-теоретик Стивен Хокинг, предупреждают, что освоение космоса является необходимой частью выживания человечества. Однако дороговизна космических полетов отпугивает многих инвесторов. Так, с точки зрения экономической эффективности, космос может быть не самым выгодным способом спасения человечества. Многие вкладывают средства в борьбу с изменением климата и загрязнением окружающей среды, при этом освоение космических путешествий может оказаться как запасным вариантом, так и отличным дополнением к работе на Земле. В конце концов, один из лучших способов мониторинга окружающей среды — из космоса.

Выход за пределы Солнечной системы может оказаться единственным для нашего вида способ выжить

Подписывайтесь на наш новостной канал в Telegram чтобы быть в курсе последних научных открытий.

Сегодня одним из главных вопросов является полет человека к Красной планете. Некоторые специалисты прогнозируют, что он состоится в ближайшие 30 или сто лет. А выйти за пределы нашей Солнечной системы к экзопланетам будет намного сложнее, но это следующий шаг. Некоторые специалисты, например Фредерик Марин, астрофизик из Страсбургского университета во Франции, работает над созданием гигантского космического корабля, который позволит поддерживать жизнь нескольких поколений. Сегодня никто не может точно сказать, возможно ли это с биологической точки зрения, с точки зрения физики, химии, производства продуктов питания и производства энергии, искусственной гравитации и так далее. Однако мы этого узнаем, если не попробуем. Согласны?

Источник

Первый в мире космический спутник из дерева будет запущен в 2021 году

Находящиеся на орбите Земли спутники сделаны из алюминия, углепластика или титана. Инженеры используют эти материалы ввиду того, что они хорошо пропускают сигналы, обладают относительно небольшой массой и податливы к приданию разных форм. В начале 2021 года японские ученые задались вопросом — почему бы им не начать изготавливать космические спутники из дерева? Ведь этот материал тоже обладает большим количеством преимуществ, главным из которых, как вы уже могли понять, является дешевизна. Но у древесины есть один менее очевидный плюс — он быстро сгорает, не выбрасывая в окружающую среду много вредных веществ. Если бы все искусственные спутники были сделаны из дерева, орбита нашей планеты не была бы засорена космическим мусором. Перед изготовлением деревянных спутников, инженерам нужно убедиться, что этот материал выдерживает космические условия. Японские исследователи хотели запустить пробный деревянный аппарат в 2023 году, но Европейское космическое агентство (ESA) их опередило — его Woodsat полетит в космос в конце 2021 года.

Первый деревянный спутник будет выглядеть примерно так

Первый спутник из дерева

По данным издания New Atlas, деревянный спутник Woodsat будет сделан в форме кубсата — квадратного аппарата размером около 10 кубических сантиметров. Коробочка будет сделана из фанеры, металлическим будет только механизм для изменения положения встроенной камеры. Автором проекта является журналист Яри Макинен (Jari Makinen), который возглавляет компанию Arctic Astronauts по изготовлению таких же маленьких спутников, но из более популярных материалов.

Окинем спутник взглядом еще раз?

По его словам, раньше ему очень нравилось мастерить самолеты из дерева, поэтому недавно он задумался: почему люди все еще не создают космические спутники из дерева? В 2017 году он разработал деревянный аппарат KitSat и успешно вывел его на стратосферу — слой земной атмосферы, который находится на высоте от 11 до 50 километров. Так как все прошло хорошо, авторы проекта решили пойти дальше и вывести похожий аппарат на земную орбиту, располагающуюся на высоте около 550 километров.

Читайте также:  Где находится ккт космос

Спутник KitSat 2017 года

Из чего состоит космический спутник?

Для начала стоит отметить, что космический спутник нельзя собрать из первого попавшегося куска фанеры. Дело в том, что в нем содержится большое количество влаги — в космических условиях такой материал быстро растворится. Чтобы устранить влагу, исследователи поместили древесину в термокамеру и тщательно высушили. После этого материал был покрыт слоем оксида алюминия, который нужен для защиты от попадания внутрь влаги и последующего окисления.

Древесина — недорогой, но очень капризный материал

На деревянном корпусе инженеры закрепят светодиодную лампу, датчик измерения уровня давления, датчик грязи и камеру. При помощи них исследователи хотят узнать, как древесина реагирует на воздействие ультрафиолетового излучения Солнца, пыли и атомарного кислорода. Последний является сильнейшим окислителем, который легко может разрушить деревянный спутник. Но пока это не только — убедиться в этом можно будет только после тщательного изучения аппарата при помощи камеры. По крайней мере, слой из оксида алюминия должен хотя бы немного его защитить.

Запуск деревянного спутника

На данный момент ожидается, что деревянный спутник Woodsat будет запущен в небо в конце 2021 года. Для этого будет использована ракета-носитель Electron от компании Rocket Lab. Это довольно новая ракета, потому что первый его запуск был совершен только в 2017 году. Он способен выводить в космос полезную нагрузку массой до 150 килограмм и каждый его спутник обходится клиентам компании в сумму от 4,9 до 6,6 миллионов долларов США.

Запуск ракеты-носителя Electron

Если вам интересны новости науки и техники, подпишитесь на наш канал в Яндекс.Дзен. Там вы найдете статьи, которые не были опубликованы на сайте!

В начале статьи я упомянул, что ранее создать деревянный спутник планировали японские инженеры — они работают в компании Sumitomo Forestry. Однако, испытания этого спутника начнутся только в 2023 году. Судя по всему, Европейское космическое агентство опередит японцев в этом деле. Правда автор проекта Яри Макинен будто бы относится к своему детищу как просто к красивому объекту. Лично мне кажется, что зря — если деревянные спутники смогли бы решить проблему избытка космического мусора, это было бы действительно круто. Ведь даже крошечные фрагменты старых спутников могут повредить нынешнее оборудование — недавно от мусорных частиц пострадала роботизированная рука МКС.

Источник

Космические отели, высадка на Марсе и жизнь на альфе Центавра: каким будет космос через 60 лет

Один из самых известных футуристов — Рэй Курцвейл — предсказал к 2045 году технологическую сингулярность. Искусственный интеллект станет быстрее человека и будет развивать технологии с такой скоростью, что мы не сможем в них разобраться. Что касается ситуации в космонавтике, тут все проще. Уже сейчас можно попытаться дать прогноз на ближайшие 60 лет. Будем смотреть, каких пределов достигнем по максимуму. Потому что минимум мы имеем сегодня: войны, пандемии и человечество, застрявшее на орбите.

Как писатели-фантасты поспешили с космическим оптимизмом

Когда Юрий Гагарин полетел в космос, человечество уже сфотографировало обратную сторону Луны и даже отправило первые аппараты на Венеру и Марс (пока еще неудачно). В 1962 году президент США Джон Кеннеди поставил цель высадить астронавтов на Луну до конца десятилетия. А в СССР под руководством Сергея Королева проектировали корабль для пилотируемой экспедиции на Марс. Фантасты и вовсе послали космонавтов на все планеты Солнечной системы и даже за ее пределы, а корабли в их книгах перемещались с помощью фотонного двигателя на антивеществе.

Действительность оказалась сложнее и скучнее оптимистических планов. Человек после шести полетов к Луне так и не выбрался за пределы земной орбиты, хотя беспилотные космические станции улетели за орбиту Плутона и даже забирались в межзвездное пространство.

Чтобы вырваться за земную орбиту, нужна мегаракета

В конце XIX века калужский ученый-любитель Константин Циолковский вывел формулу для движения тела с переменной массой. Чтобы ракета могла двигаться быстрее, нужно было либо увеличить скорость истечения газов, либо увеличить долю топлива в общей массе ракеты. Но если первое изменить почти невозможно — скорость истечения газов зависит от топливной пары и практически фиксированная, то второе очень затратно. Масса топлива в ракетах составляет около 90% от общего веса, увеличивать ее просто некуда — нужны еще баки, чтобы залить в них топливо и окислитель, жилой модуль для космонавтов, корпус ракеты, наконец.

Например, американцам, чтобы слетать на Луну, пришлось создать ракету «Сатурн-5», масса которой была почти 3 тысячи тонн и высота — более 100 метров. Лунная программа обошлась США в $125 млрд по современному курсу. И если до Луны лететь три дня, то полет на Марс займет месяцев семь, — соответственно, увеличились бы и расходы. Стимул тратить такие деньги у США пропал, когда СССР не смог выполнить свою лунную программу.

Формула Циолковского с тех пор не изменилась, затраты на космос в таких масштабах уже не окупают политические и научные преимущества, получаемые в таких экспедициях. Зато появились новые технологии. Многие из них касаются усовершенствования систем управления, но есть и новые материалы, более мощные двигатели, а у SpaceX еще и возвращаемая первая ступень, благодаря которой снижаются затраты на миссии.

Лунные и марсианские надежды

Применение новых технологий и активное сотрудничество NASA с частными компаниями в разы снизило стоимость проектов. До 2030 года мы снова сможем увидеть человека на самой Луне и на ее орбите. Первоначально пилотируемые миссии планировались уже на ближайшие годы, но, скорее всего, немного сдвинутся. Если NASA и SpaceX затянут с посещением Луны, их могут опередить китайцы или «Роскосмос». Китай тратит на космос значительные ресурсы и может создать необходимые технологии за следующие десять лет. Россия уже имеет, пожалуй, лучшие ракетные двигатели в мире и продолжает их совершенствовать. К тому же наши страны недавно заключили меморандум о создании Лунной станции. Объединившись, они могут приблизить и высадку на Луну.

Читайте также:  Космос планеты солнечной системы нарисовать

Пока Луна не представляет коммерческой ценности, но если возвращение к 2030 году удастся, то ее плотное изучение потребует постоянных лунных баз. А обнаруженные вода и полезные ископаемые, возможно, сделают выгодным коммерческое производство на Луне к 2081 году. Интересно, будет ли их видно с Земли?

Марс — более сложная цель. Но и при современных технологиях мы уже способны построить достаточно большие и мощные ракеты, чтобы обеспечить полет и возвращение людей на него. Расчеты показывают, что топливо, кислород и некоторые другие необходимые вещества можно будет добыть на Марсе, а значит, не придется их везти с Земли. По самым оптимистичным подсчетам — конечно, их сделал фанат Красной планеты Илон Маск, — астронавты смогут высадиться на Марс в 2028 году. Думаю, что более реальна высадка к 2040 году — все-таки сначала надо отработать все элементы пилотируемой миссии на Луне.

Не уверен, что действительно можно рассчитывать на создание колонии на Марсе, но если удастся, например, обнаружить на Красной планете жизнь или следы ее присутствия в прошлом, то планете будет обеспечен интерес и регулярные миссии, как пилотируемые, так и автоматические.

Увы, для человека это все. Высадка на Венеру практически невозможна — слишком тяжелым будет посадочный модуль для космонавтов, чтобы выдержать давление 90 атмосфер и температуру 470 градусов на поверхности соседней планеты. Да и передвигаться в таких условиях тяжело. Можно помечтать о высадке сразу в дирижабле в слои атмосферы с более привычными давлением и температурой, однако схема выглядит сложной и, главное, цель непонятна. На Луне и Марсе человек сможет использовать свои преимущества перед роботами, чтобы выполнять исследования или даже работать. На Венере слишком сложные условия, чтобы найти достойную цель для отправки туда человека.

Роботы в поисках жизни

Одним из самых чудесных открытий для человека было бы найти братьев по разуму, иные цивилизации. Желательно те, которые мы сможем понять и с которыми сможем общаться. Пока не обнаружено надежных признаков их существования, но за прошедшие 60 лет наши устройства стали в миллиард раз чувствительнее. Можно надеяться, что в следующие 60 лет они продолжат свой прогресс и мы сможем еще внимательнее слушать Вселенную.

Пока мы стараемся найти жизнь в Солнечной системе. Текущий интерес к Марсу (его изучает больше аппаратов, чем все остальные тела Солнечной системы, кроме Земли) связан с тем, что на нем в прошлом были подходящие условия для жизни. Даже если эта жизнь вымерла, когда улетучилась с атмосферы Красной планеты, хотелось бы узнать, какой она была. Хорошие шансы найти жизнь и на спутниках Юпитера и Сатурна — Европе и Энцеладе. По современным данным, под их ледяной оболочкой находится водяной океан — тепла от недр достаточно, чтобы он не замерзал. Вполне подходящие условия, чтобы зародилась жизнь, пусть и простейшая.

Миссия Europa Clipper к Европе подтверждена, но год запуска пока не определили. Оптимистичный сценарий — это 2025 год, еще лет шесть уйдет на преодоление расстояния от Земли до спутника Юпитера. Уже в начале 2030-х мы можем узнать, существует ли там жизнь. Позднее отправят космический аппарат и для изучения Энцелада. Параллельно «Роскосмос» планирует к 2029 году запустить миссию на Венеру. Одной из ее задач также будет поиск признаков текущей или существовавшей ранее жизни. Возможно, этим поискам помогут и другие страны. Если в Солнечной системе есть или была жизнь за пределами Земли, то уже к 2040 году мы будем знать об этом.

Как мы будем искать следы жизни в альфа Центавре

Пока мы не можем отправиться искать жизнь за пределы Солнечной системы, но уже начали разведку: с помощью телескопов обнаружено около 5 тысяч экзопланет. Процесс их открытия ускоряется: запущенный в 2018 году телескоп TESS открывает их пачками, а наземные обсерватории помогают их подтвердить. Чем больше планет, тем больше шанс, что на какой-то из них будет жизнь. Для этого надо изучить и классифицировать экзопланеты, подобрав потенциально обитаемые миры.

Практически все экзопланеты открыты за последние 20 лет, и темп их обнаружения ускоряется. А телескоп имени Джеймса Уэбба потенциально нам позволит проанализировать атмосферу экзопланет, находящихся в многих световых годах от нас, чтобы найти биомаркеры — вещества, которые обычно порождают живые существа: кислород, метан, фосфин и другие. Его ввод в строй ожидался в 2007 году и с тех пор постоянно переносится, но он может начать работать в ближайшие годы.

Конечно, даже обнаружение планеты с живыми существами не гарантирует, что на ней разовьется разумная жизнь. Но и просто найти бактерии вне Земли будет большим открытием. Это позволит изучить принципы, по которым мы сможем предсказать, в каких условиях стоит искать жизнь, и сузить круг планет, на которых будем искать мыслящих существ.

В NASA уже готовят следующий совершенно фантастический шаг — попытаются разглядеть поверхность далеких экзопланет, очертания их континентов и свечения на поверхности (возможно, будет видно крупные города!). Миссия российского ученого Вячеслава Турышева с использованием солнечной гравитационной линзы прошла уже третью стадию отбора в конкурсе визионерских проектов. Это значит, что велика вероятность ее реализации. Идея в отправке телескопа в ту точку, где Солнце соберет лучи от выбранной планеты. Сначала с помощью таких инструментов, как TESS, телескоп Джеймса Уэбба и другие, выберут планеты, на которых с высокой вероятностью есть жизнь. После чего в противоположную от планеты сторону отправят телескоп, который в фокусе (области, где Солнце, как линза, соберет свет от этой планеты) рассмотрит ее увеличенное изображение. Вячеслав Турышев считает, что проект уже можно осуществить при нынешних технологиях, но потребуется развить их, выжать из них максимум. Подготовка может занять лет десять, еще 20−25 лет ракете понадобится, чтобы долететь до фокуса солнечного гравитационного телескопа. Значит где-то к 2060 году мы сможем увидеть поверхность далеких экзопланет.

Читайте также:  Физминутка космос для школьников

Еще один амбициозный проект Breakthrough Starshot инициировал технологический инвестор Юрий Мильнер. Предлагается создать рой из небольших зондов и разогнать их до околосветовой скорости с помощью сверхмощных лазеров. Они могли бы примерно за 20 лет достичь соседней звездной системы и передать изображение планеты, которая может вращаться вокруг одного из трех светил звездной системы альфа Центавра. Этот проект требует решения множества технических проблем: нет достаточно мощных лазеров, не создан материал парусов, которые не сгорят под их светом, нет достаточно мощных чипов, чтобы передать сигнал на расстояние четырех световых лет, и антенн, способных его уловить.

Космический отель, космический лифт и огромная линза на земной орбите

Как ни странно, но самые заметные изменения могут произойти на орбите Земли. Кажется сегодня уже трудно удивить кого-то очередной съемкой Земли со спутников или запуском корабля на МКС, даже туристы на орбитальную станцию «Мир» летали.

Но что если на орбите откроют целый отель для космических туристов? Все-таки на МКС не так много места, а платить по $30−40 млн за билет покупатели будут с большим удовольствием, если у них будут просторные комнаты и большие иллюминаторы. Компания Voyager обещает начать строить его уже в 2025 году. Планы кажутся несколько оптимистичными, но опыт безопасного путешествия на орбиту и обратно у нас уже есть. Если приключение будет достаточно интересным, то появление отеля — просто вопрос времени.

Многие спутники работают на гелиосинхронной орбите, которая позволяет им никогда не заходить в тень Земли и постоянно вырабатывать электричество для своих бортовых схем. У Китая есть планы построить на орбите целую солнечную электростанцию к 2035 году. Ей не помешают работать ни ночь, ни пыль, ни снег. Однако выработанную энергию надо будет передавать на Землю, и тут еще предстоит поработать. Либо это будет сделано по лазерному лучу, но надо поработать над его мощностью и не спалить случайно какой-нибудь город. Либо пустить на Землю провод. А от этой идеи один шаг до создания космического лифта.

Космический лифт — давняя инженерная идея. У нас уже есть геостационарные спутники — высота их орбиты подобрана так, чтобы они вращались строго над определенной точкой Земли. Опустим с них трос и будем передавать на орбиту грузы, не тратя тысячи тонн горючего. Однако ни сталь, ни другие существующие вещества не позволят сделать такой длинный трос, способный выдержать собственный вес. В ближайшем будущем изделия на основе графена или других метаматериалов вполне могут обеспечить нужную прочность. Тогда будет проще закидывать на орбиту научные аппараты или ту же солнечную станцию.

Светодиодные лампочки сэкономили энергии уже на миллиарды долларов, однако можно еще удешевить свет. Например, запускать на орбиту зеркала, которые будут отражать лучи Солнца. У такого подхода свои сложности — большая площадь зеркала будет испытывать трение об атмосферу, которая очень сильно разрежена, но отнюдь не заканчивается на 100 километрах. Надо еще научиться, с одной стороны, точно фокусировать «зайчик» от зеркала на выбранном месте, а с другой — постараться не превратить его в гигантскую линзу, которая выжжет все под собой.

Мы уже можем увидеть на небе вереницы спутников связи Starlink. Если опыт компании Илона Маска окажется удачным, то многие компании смогут реализовать свои проекты с тысячами аппаратов связи на орбите. Тогда у нас будет и хорошая связь в любой точке Земли, и недорогая энергия. Но вот чистым звездным небом уже можно будет полюбоваться только из отеля, расположенного на высокой орбите.

Спустя 120 лет со дня полета Гагарина

За 20−40 лет можно успеть реализовать практически все задачи, которые касаются исследования Солнечной системы. Человек вернется на Луну, видимо, высадится на Марс и, возможно, найдет способ спуститься в атмосферу Венеры. Это все займет два-три года. А вот добраться до пояса астероидов и дальше за это время не получится. Пусть эти пространства могут быть интересны и не только ученым. Мы писали, что такие небесные тела, как Психея, могут содержать миллионы тонн драгоценных металлов, которые пригодились бы для растущих потребностей Земли. Правда, лететь очень долго, и в лучшем случае полеты будут в рамках автоматических миссий.

А может, не зря упомянутый в начале Рэй Курцвейл прогнозирует технологическую сингулярность? Пусть нас заменят роботы. На самом деле, больше чем на 20 лет очень трудно прогнозировать: например, в 1990-е планировали через 20 лет запустить термоядерный реактор (энергия почти даром и почти отсутствие радиации при поломке) и полностью секвенировать геном человека. Сейчас полноценный термоядерный реактор мы по-прежнему планируем запустить через 20 лет, а вот секвенирование генома провели ударными темпами в начале XXI века — сложно было учесть все факторы.

Для космоса одно из главный ограничений — время полета. Чтобы лететь быстрее, нужны новые двигатели. В проекте Вячеслава Турышева предлагается разгоняться, используя солнечный парус. При должных параметрах он позволит в разы сократить время путешествия.

Более сложный, но все еще возможный вариант — различные типы ядерных двигателей. Они разогревают топливо или ионизируют и ускоряют его электрическим полем и выбрасывают со скоростями, в разы превышающими таковые для существующих ракет. Помните о формуле Циолковского? Быстрее истечение газов, выше скорость ракеты!

А может быть, в будущем мы научимся создавать и применять антивещество в больших объемах для фотонных звездолетов за вменяемые деньги. Или нам удастся придумать новые принципы передвижения, не нарушая постулатов Общей теории относительности Эйнштейна, но обходя запрет на максимум в скорость света, проделывая кротовые норы в пространстве или находя короткие ходы через другие измерения.

Надеюсь, космос не ждет новая зима, как в 80-х годах XX века. И, учитывая развитие медицины, мы с вами вполне можем дожить до 120-летия со дня полета Гагарина, чтобы оценить точность этого прогноза.

Источник

Adblock
detector