Меню

Как впервые вычислили расстояние до солнца

Расстояние между Землей и Солнцем

Попытки рассчитать расстояние от Земли до Солнца и прогнозировать связанные с ним явления начали предпринимать в Древней Греции. Тогда были произведены приблизительные вычисления, которые стали основой для последующего развития астрономической науки. Современным ученым уже доступны технологии, которые позволяют определять расстояние до Солнца с погрешностью до нескольких долей сантиметра.

Точное расстояние на сегодняшний день

Расстояние между центрами Земли и Солнца принято считать равным 149 597 870 км, но этот показатель условен. Планета совершает движение по эллиптической орбите, поэтому ее удаленность от звезды постоянно меняется.

Понятие астрономической единицы

Расстояние, на которое удалено Солнце от Земли, называют астрономической единицей. С ее помощью принято совершать измерения дистанций между космическими объектами. Русское обозначение единицы — а.е., в международном формате — au.

Решением Международного астрономического союза с 2012 г. астрономическая единица привязана к Международной системе единиц (СИ) и равна 149 597 870 700 м. Данный показатель используется для вычислений, не требующих высокой точности. В ином случае рассчитывается величина для нужного момента времени.

Современные технологии космической отрасли позволяют определять величину астрономической единицы с высокой точностью. Наблюдая за изменениями ее значения, в 2004 г. российские ученые Г. Красинский и В. Брумберг обнаружили, что Земля и Солнце расходятся. Постепенное отклонение объектов незначительно и составляет около 15 см ежегодно. Причина явления пока не установлена, но выдвинуто много интересных гипотез.

Влияние приливов и отливов на дистанцию

По мнению команды японского астрофизика Такахо Миура, расхождение рассматриваемых космических объектов объясняется приливным взаимодействием. Невзирая на малые размеры планеты относительно Солнца, она должна порождать в теле звезды приливы, т. к. более близкие участки светила притягиваются немного сильнее, чем дальние. Подобные приливы передвигаются по поверхности и тормозят вращение объекта. Поскольку полный момент импульса системы Земля-Солнце сохраняется, происходит незначительное расширение гелиоцентрической орбиты.

Афелий и перигелий

Афелий и перигелий характеризуют максимальный и минимальный параметры удаленности Земли от звезды. Это связано с эллиптической формой орбиты Земли.

Афелий, или апогелий — это дальняя точка гелиоцентрической орбиты Земли, которая удалена от Солнца на 152 098 233 км. Термином «афелий» астрофизики называют точку гелиоцентрической орбиты любого космического тела, которая находится максимально далеко от нашей звезды. Земля максимально отдаляется от Солнца в период с 3 по 7 июля.

Соответственно, перигелий — ближайшая точка, которая располагается на расстоянии 147 098 291 км от звезды. Земля ежегодно проходит эту отметку со 2 по 5 января.

Измерения расстояния до Солнца в Древней Греции

Древнегреческие ученые стали первопроходцами в вопросе определения расстояния от Земли до Солнца. В то время они располагали лишь простым инструментарием и геометрическими методами.

Предположения Аристарха Самосского

Основой для его вычислений стало предположение, что шарообразная Луна отражает солнечный свет. Когда она будет располагаться в половине фазы, можно провести прямой угол Земля-Луна-Солнце. При этом сторона Земля-Луна является катетом, а Земля-Солнце — гипотенузой. Согласно идее Аристарха, расстояние до звезды выражается отношением катета к гипотенузе и составляет 1:19. Данный результат отличается от действительных значений в 20 раз, что связано с неточными расчетами. Аристарх брал за основу данные визуальных наблюдений, что всегда чревато большими погрешностями.

Измерения Гиппарха Никейского

Величайшим астрономом античности называли Гиппарха Никейского — древнегреческого математика II в. до н.э. Он привнес в астрономические вычисления более точные методы древневавилонских исследователей.

Фундаментом метода Гиппарха стало понимание причины лунных затмений, заключающейся в том, что спутник оказывается в тени нашей планеты. При этом тень имеет коническую форму с вершиной, расположенной ближе к Луне. Применив простейшие измерительные инструменты, астроном вычислил радиусы исследуемых объектов. Используя правила подобия треугольников, он смог определить удаленность Солнца. Полученное значение составило 382 тыс. км. Результаты Гиппарха были признаны самыми точными за период древней истории.

Расчеты Нового времени

Исследователи Нового времени подошли к расчетам космических расстояний более скрупулезно. Большинство их трудов обладали высокой точностью и признаны научными кругами тех лет.

Метод прямоугольных треугольников Кристиана Гюйгенса

Нидерландский ученый Кристиан Гюйгенс в 1653 г. предпринял попытку произвести собственные расчеты. Его методика оказалась похожа на подход Аристарха Самосского. Гюйгенс также применил метод исследования прямоугольного треугольника, только для системы Земля-Венера-Солнце. Случайно угадав величину Венеры, он произвел вычисления. Научные круги не восприняли измерения астронома всерьез, посчитав их догадкой.

Читайте также:  Чему равен зенит солнца

Измерения Кассини и Рише

В 1672 г. Джованни Кассини, находясь в Париже, проводил наблюдения за движением Марса по звездному небу. Аналогичные исследования он поручил своему помощнику Жану Рише, отправив коллегу в Гвиану.

Для измерений Кассини использовал расположение звезд, окружающих Марс, а затем сопоставил данные с наблюдениями Рише. Ученому удалось определить длину отрезка Земля-Марс, на основе которой он смог вычислить дистанцию Земля-Солнце. Астроном использовал научные методы, благодаря чему результаты его работы были признаны.

Метод параллакса

В своих экспериментах Кассини и Рише использовали явление параллактического смещения — видимого изменения положения космического тела относительно фоновых объектов, отдаленных от него на некоторое расстояние. Смещение становится очевидным, когда наблюдатель меняет точку обзора.

Метод стандартных свечей

Посредством тригонометрических параллаксов определяются расстояния до близких космических объектов. Для измерения дистанций тел, удаленных на большое расстояние, применяется метод стандартных свечей. Он учитывает правило, согласно которому освещенность уменьшается обратно пропорционально квадрату расстояния.

В качестве стандартных свечей выступают звезды. Поскольку светила с идентичной температурой и размерами излучают одинаковую энергию, однотипные звезды используются для определения расстояний. Зная удаленность и величину энерговыделения Солнца, можно вычислить расстояние до похожих звезд.

Исследования Новейшего времени

Технологии Новейшего времени произвели революцию в астрономических исследованиях, позволив получить максимально точные данные о расстояниях в космосе.

Метод радиолокации

Измерение расстояния с помощью радиолокации базируется на передаче импульсов к небесному телу. Отправленные волны отражаются от объекта и возвращаются. После этого анализируется их интенсивность и время движения, на основании чего рассчитывается пройденная дистанция.

Сложность использования метода радиолокации состоит в том, что интенсивность волн уменьшается обратно пропорционально четвертой степени расстояния до изучаемого объекта. Для решения задачи приходится создавать мощные передатчики и большие антенны. Но затраты оправдываются высокой точностью полученных данных. Погрешность составляет несколько километров.

Определение дистанции лазером

Принцип лазерной локации идентичен радиоволновому методу. Мощный передатчик направляет к небесному телу световой луч, который отражается от него и возвращается на Землю. Интенсивность и время его прохождения учитываются при расчете расстояния.

Данный метод отличается высокой точностью и позволяет получать данные с погрешностью до нескольких долей сантиметра, но для реализации метода требуется технологически сложное и дорогостоящее оборудование.

Единицы измерения космических расстояний

Для оперирования гигантскими космическими расстояниями земные меры не подходят. В астрономии существуют три главные единицы измерения:

  1. Астрономическая единица — составляет 149,6 млн км.
  2. Световой год — составляет около 9 460 730 472 580 800 м и представляет собой пройденное световой волной за юлианский год расстояние.
  3. Парсек — примерно равен 3,26 светового года и определяется как дистанция, с которой радиус орбиты Земли виден под углом в 1 секунду дуги. Данная мера применяется профессиональными астрономами вместо светового года.

Астрономическая единица используется для вычисления дистанций в пределах Солнечной системы, а световой год и парсек — для оценки межзвездных космических расстояний.

Источник

О размерах и расстояниях (Аристарх) — On the Sizes and Distances (Aristarchus)

О размерах и расстояниях (Солнца и Луны) (Περὶ μεγεθῶν καὶ ἀποστημάτων [ἡλίου καὶ σελήνης], Peri megethon kai apostematon ) широко признается как единственная сохранившаяся работа, написанная древним греком-астрономом Аристархом в 310 г. –230 г. до н. Э. В этой работе вычисляются размеры Солнца и Луны , а также их расстояния от Земли в единицах радиуса Земли.

Книга была предположительно сохранена студентами курса математики Паппа Александрийского , хотя свидетельств этого нет. В первое издание было опубликовано Джон Уоллис в 1688, используя несколько средневековых рукописей , собранных сэром Генри Сэвил . Самый ранний латинский перевод был сделан Джорджо Валла в 1488 Существует также 1572 латинский перевод и комментарий по Фредерико Commandino .

СОДЕРЖАНИЕ

Символы

Метод работы основывался на нескольких наблюдениях:

  • Видимый размер Солнца и Луны на небе.
  • Размер тени Земли относительно Луны во время лунного затмения
  • Угол между Солнцем и Луной во время полумесяца очень близок к 90 °.

Остальная часть статьи детализирует реконструкцию метода и результатов Аристарха. Реконструкция использует следующие переменные:

Символ Смысл
φ Угол между Луной и Солнцем в течение полумесяца (измеряется напрямую)
L Расстояние от Земли до Луны
S Расстояние от Земли до Солнца
Радиус Луны
s Радиус Солнца
т Радиус Земли
D Расстояние от центра Земли до вершины теневого конуса Земли
d Радиус тени Земли в месте нахождения Луны
п Отношение, d / ℓ (величина, непосредственно наблюдаемая во время лунного затмения )
Икс Отношение S / L = s / ℓ (рассчитывается по φ )
Читайте также:  Летние красивые платья с юбками солнце

Месяц

Аристарх начал с предположения, что во время полумесяца Луна образует прямоугольный треугольник с Солнцем и Землей. Наблюдая за углом между Солнцем и Луной, φ , отношение расстояний до Солнца и Луны может быть вычислено с помощью одной из форм тригонометрии .

Из диаграммы и тригонометрии мы можем вычислить, что

S L знак равно 1 потому что ⁡ φ знак равно сек ⁡ φ . <\ displaystyle <\ frac > = <\ frac <1><\ cos \ varphi>> = \ sec \ varphi.>

Диаграмма сильно преувеличена, потому что на самом деле S = 390 L , а φ очень близко к 90 °. Аристарх определил φ на тридцатую часть квадранта (в современных терминах, на 3 °) меньше прямого угла: в современной терминологии 87 °. Тригонометрические функции еще не были изобретены, но, используя геометрический анализ в стиле Евклида , Аристарх определил, что

18 S L 20. <\ displaystyle 18

Другими словами, расстояние до Солнца было где-то в 18-20 раз больше, чем расстояние до Луны. Это значение (или значения, близкие к нему) были приняты астрономами в течение следующих двух тысяч лет, пока изобретение телескопа не позволило более точную оценку солнечного параллакса .

Аристарх также рассуждал, что, поскольку угловые размеры Солнца и Луны были одинаковыми, но расстояние до Солнца было в 18-20 раз дальше, чем Луна, Солнце, следовательно, должно быть в 18-20 раз больше.

Лунное затмение

Затем Аристарх использовал другую конструкцию, основанную на лунном затмении:

По подобию треугольников и D L знак равно т т — d <\ displaystyle <\ frac > = <\ frac

> \ quad> D S знак равно т s — т . <\ displaystyle \ quad <\ frac > = <\ frac >.>

Разделив эти два уравнения и используя наблюдение, что видимые размеры Солнца и Луны одинаковы , дает L S знак равно ℓ s <\ displaystyle <\ frac > = <\ frac <\ ell>>>

ℓ s знак равно т — d s — т ⇒ s — т s знак равно т — d ℓ ⇒ 1 — т s знак равно т ℓ — d ℓ ⇒ т ℓ + т s знак равно 1 + d ℓ . <\ displaystyle <\ frac <\ ell>> = <\ frac > \ \ \ Rightarrow \ \ <\ frac > = <\ frac <\ ell>> \ \ \ Rightarrow \ \ 1 — <\ frac > = <\ frac <\ ell>> — <\ frac <\ ell>> \ \ \ Rightarrow \ \ <\ frac <\ ell>> + <\ frac > = 1 + <\ frac <\ ell>>.>.

Крайнее правое уравнение может быть решено относительно ℓ / t

т ℓ ( 1 + ℓ s ) знак равно 1 + d ℓ ⇒ ℓ т знак равно 1 + ℓ s 1 + d ℓ . <\ displaystyle <\ frac <\ ell>> (1 + <\ frac <\ ell>>) = 1 + <\ frac <\ ell>> \ \ \ Rightarrow \ \ < \ frac <\ ell>> = <\ frac <1 + <\ frac <\ ell>>> <1 + <\ frac <\ ell>>>>.>.

т s ( 1 + s ℓ ) знак равно 1 + d ℓ ⇒ s т знак равно 1 + s ℓ 1 + d ℓ . <\ displaystyle <\ frac > (1 + <\ frac <\ ell>>) = 1 + <\ frac <\ ell>> \ \ \ Rightarrow \ \ <\ frac > = <\ frac <1 + <\ frac <\ ell>>> <1 + <\ frac <\ ell>>>>.>.>

Внешний вид этих уравнений можно упростить, используя n = d / ℓ и x = s / ℓ .

ℓ т знак равно 1 + Икс Икс ( 1 + п ) <\ displaystyle <\ frac <\ ell>> = <\ frac <1 + x>>> s т знак равно 1 + Икс 1 + п <\ displaystyle <\ frac > = <\ frac <1 + x><1 + n>>>

Приведенные выше уравнения полностью определяют радиусы Луны и Солнца в виде наблюдаемых величин.

Следующие формулы дают расстояния до Солнца и Луны в земных единицах:

L т знак равно ( ℓ т ) ( 180 π θ ) <\ displaystyle <\ frac > = \ left ( <\ frac <\ ell>> \ right) \ left ( <\ frac <180><\ pi \ theta>> \ right) > S т знак равно ( s т ) ( 180 π θ ) <\ displaystyle <\ frac > = \ left ( <\ frac > \ right) \ left ( <\ frac <180><\ pi \ theta>> \ right)>

где θ — видимый радиус Луны и Солнца, измеренный в градусах.

Маловероятно, что Аристарх использовал эти точные формулы, но эти формулы, вероятно, являются хорошим приближением к формулам Аристарха.

Полученные результаты

Приведенные выше формулы могут быть использованы для реконструкции результатов Аристарха. В следующей таблице показаны результаты давней (но сомнительной) реконструкции с использованием n = 2, x = 19,1 ( φ = 87 °) и θ = 1 °, наряду с современными принятыми значениями.

Ошибка в этом вычислении происходит в первую очередь из-за плохих значений x и θ . Плохое значение θ особенно удивительно, поскольку Архимед пишет, что Аристарх был первым, кто определил, что Солнце и Луна имеют видимый диаметр в полградуса. Это даст значение θ = 0,25 и соответствующее расстояние до Луны в 80 радиусов Земли, что намного лучше. Несогласие в работе с Архимедом, по-видимому, связано с утверждением Аристарха о том, что лунно-солнечный диаметр составляет 1/15 «мероса» зодиака, что означает 1/15 зодиакального знака (30 °), не зная, что Греческое слово «мерос» означало либо «часть», либо 7 ° 1/2; и 1/15 последней суммы составляет 1 ° / 2, что согласуется с показаниями Архимеда.

Аналогичная процедура была позже использована Гиппархом , который по оценкам среднего расстояния до Луны , как 67 радиусов Земли, и Птолемея , который принял 59 радиусов Земли для этого значения.

Иллюстрации

Некоторые интерактивные иллюстрации предложений в разделе « Размеры» можно найти здесь:

  • Гипотеза 4 утверждает, что когда Луна кажется нам уменьшенной вдвое, ее расстояние от Солнца будет меньше квадранта на одну тридцатую квадранта [то есть меньше 90 ° на 1/30 от 90 ° или на 3 °. , и поэтому равен 87 °] (Heath 1913: 353).
  • Предложение 1 утверждает, что две равные сферы охватываются одним и тем же цилиндром, а две неравные сферы — одним и тем же конусом, вершина которого находится в направлении меньшей сферы; и прямая линия, проведенная через центры сфер, проходит под прямым углом к ​​каждой из окружностей, в которых поверхность цилиндра или конуса касается сфер (Heath 1913: 354).
  • Утверждение 2 гласит, что если сфера освещена сферой, большей, чем она сама, то освещенная часть первой сферы будет больше, чем полусфера (Heath 1913: 358).
  • Утверждение 3 гласит, что круг на Луне, разделяющий темную и яркую части, является наименьшим, когда конус, охватывающий и Солнце, и Луну, имеет вершину у нашего глаза (Heath 1913: 362).
  • Утверждение 4 гласит, что круг, разделяющий темную и яркую части на Луне, заметно не отличается от большого круга на Луне (Heath 1913: 365).
  • Утверждение 6 гласит, что Луна движется [по орбите] ниже, чем [орбита] Солнца, и, когда она уменьшена вдвое, находится на расстоянии меньше квадранта от Солнца (Heath 1913: 372).
  • Предложение 7 гласит, что расстояние от Солнца до Земли больше, чем в 18 раз, но меньше, чем в 20 раз, расстояния Луны от Земли (Heath 1913: 377). Другими словами, Солнце находится в 18-20 раз дальше и шире Луны.
  • Утверждение 13 гласит, что прямая линия, соединяющая часть, пересеченную в пределах земной тени, окружности круга, в котором края круга, разделяющего темную и яркую части Луны, движутся меньше чем вдвое диаметра окружности. Луна, но имеет отношение к ней большее, чем отношение 88 к 45; и он составляет менее 1/9 части диаметра Солнца, но имеет отношение к нему больше, чем 21, к 225. Но у него есть прямая линия, проведенная из центра Солнца под прямым углом к ось и встречающиеся со сторонами конуса отношение больше, чем отношение 979 к 10 125 (Heath 1913: 394).
  • Предложение 14 гласит, что прямая линия, соединяющая центр Земли с центром Луны, имеет прямую, отрезанную от оси к центру Луны прямой линией, проходящей через [окружность] в тени Земли a отношение больше, чем у 675 к 1 (Heath 1913: 400).
  • Предложение 15 утверждает, что диаметр Солнца имеет отношение к диаметру Земли больше 19/3, но меньше 43/6 (Heath 1913: 403). Это означает, что Солнце (в среднем) в 6¾ раз шире Земли или что Солнце имеет ширину 13½ земного радиуса. Тогда Луна и Солнце должны быть на расстоянии 20¼ и 387 земных радиусов от нас, чтобы иметь угловой размер в 2º.
  • Предложение 17a в средневековой арабской версии книги Ат -Туси о размерах утверждает, что отношение расстояния вершины теневого конуса от центра Луны (когда Луна находится на оси [то есть в середине затмение] конуса, содержащего Землю и Солнце) к расстоянию от центра Луны до центра Земли больше отношения 71 к 37 и меньше отношения 3 к одному (Berggren & Sidoli 2007: 218). Другими словами, кончик теневого конуса Земли находится между 108/37 и в четыре раза дальше, чем Луна.

Источник

Adblock
detector