Меню

Как называется отражение света от луны

Почему светит Луна? Описание, фото и видео

Многие задаются вопросом: почему с наступлением темноты Луна начинает светиться? Благодаря ученым, есть ответ на этот вопрос. Возможно, для кого-то это станет разочарованием, но Луна не светится, а лишь отражает свет от главной звезды во вселенной – Солнца. Рассмотрим подробнее тему свечения, разобрав процесс и уделив внимание нескольким интересным фактам.

Причины свечения Луны

Как было сказано, спутник не является источником света, а лишь отражает его. Но как каменистое небесное тело без атмосферы может делать это? Ответ прост – оказывается, лунная почва на 50% состоит из стеклянных фракций. Среди камней можно встретить много стеклянных шаров, некоторые из которых имеют абсолютно круглую поверхность. Именно поэтому Луна работает в качестве отражателя.

Причины свечения Луны

Какое количество света отражает Луна?

Объекты, находящиеся в космосе, характеризуются такой величиной, как «альбедо». Она показывает, насколько хорошо объекты способны отражать солнечный свет. Например, известно, что стекло имеет высокое альбедо, а земля – низкое.

По сравнению с остальными телами в космосе, Луна имеет очень низкое альбедо. Это объясняется большим количеством неровностей и грунтом на поверхности спутника. Она способна отражать лишь 12% солнечных лучей, но этого вполне достаточно, чтобы озарять нашу планету большим количеством света.

В полнолуние спутник способен отражать большее количество солнечных лучей, поэтому его можно видеть даже в дневное время суток.

Во время суперлуния, когда Луна выглядит на 14% больше, чем обычно, свечение становится на 30% ярче, чем обычно. Это происходит, когда Земля находится максимально близко к своему единственному спутнику.

Суперлуние

Также существует еще одно обоснование яркого свечения Луны. Оно объясняется эффектом Зелигера, суть которого состоит в том, что яркость твердой шероховатой поверхности резко увеличивается, если источник освещения находится прямо за наблюдателем. Проще говоря, если в ночное время суток встать под фонарем, то свет, исходящий от него, будет казаться ярче, чем на самом деле.

Какой цвет имеет лунное свечение?

В разное время месяца и года луна имеет разный цвет, с чем это связано? Эта иллюзия возникает в результате эффекта Пуркинье, когда человеческий глаз воспринимает цвета по-разному из-за степени освещенности других объектов.

Модель эффекта Пуркине — цветок герани, видимый в нормальном ярком свете, в сумраке, и ночью

Вот несколько примеров разного свечения:

  • Лунный свет вокруг полного месяца кажется голубоватым.
  • Во время затмения спутник приобретает красный цвет.
  • В полнолуние имеет либо светло-голубой цвет, либо светло-желтый.

Почему Луна имеет разные степени свечения?

Все дело в фазах, которые проходит Луна за время вращения вокруг Земли, а Земля – вокруг Солнца. Всего их 8: новолуние, растущий месяц, первая четверть, растущая Луна, полнолуние, убывающая Луна, третья четверть, убывающая Луна. Именно в это время свет падает на спутник под разными углами.

Фазы Луны

В фазе первой четверти и последней, освещается только половина поверхности, которая обращена к Солнцу. В это время планета находится ровно по середине к Солнцу и Луне, при этом с Земли отлично видна вся Лунная поверхность.

Во время фазы новолуния, ее практически не видно, поскольку Луна находится между Солнцем и Землей. В результате получается так, что одна из сторон, которая должна отражать солнечный свет, обращена в противоположную сторону. Именно поэтому в эти дни на небосводе мы видим только небольшую часть Луны – серп.

Подводя итог, можно сказать, что Луна – это отражатель солнечного света. Сама Луна не может достаточно ярко отражать солнечный свет, поскольку поверхность лишь на 50% состоит из стеклянных фракций. Также количество освещения меняется в зависимости от фазы, в которой сейчас находится спутник.

Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник

Лунная подсказка: Отражение отражения

Пожалуй, каждому доводилось видеть Луну целиком, хотя Солнцем освещен был лишь тонкий ее полумесяц — остальная часть видна словно в тусклом пепельном свете. Объяснение этому эффекту дал еще Леонардо Да Винчи: подсветку создает солнечный свет, рассеянный Землей, который затем попадает на Луну — и отражается обратно к нам.

Ранее уже было показано, что по периодическим изменениям в характере пепельного света спутника на его планете можно обнаружить океаны («Вид в отражении»). Европейские же астрономы, работающие в обсерватории ESO, пошли еще дальше. «Мы наблюдали за пепельным светом Луны, чтобы взглянуть на Землю, как на экзопланету, — говорят они. — Поверхность Луны служит гигантским зеркалом, которое отражает свет, падающий на него с Земли, и его мы фиксировали с помощью телескопа VLT».

Читайте также:  Задание темная сторона луны

В этом тусклом свечении астрономы под руководством Энрика Палле (Enric Palle) пытались выявить следы, которые могли бы нести свидетельства о присутствии определенных веществ в земной атмосфере — веществ, связанных с несомненным наличием жизни на этой планете. Ученые вполне логично предположили, что если это удастся, то аналогичный подход можно будет, при необходимости, использовать и для далеких экзопланет. Тем более что традиционными методами вести поиски таких следов жизни очень непросто.

Интересно, что авторы решили сконцентрироваться не только на спектральных линиях в пепельном свете Луны, но и на его поляризации — иначе говоря, обратились к технике спектрополяриметрии. И путь этот оказался более чем успешным: присутствие «химических следов» жизни было выражено чрезвычайно ярко.

Один из авторов работы, работающий в Ирландии Стефано Бануло (Stefano Bagnulo) поясняет: «Свет от удаленных экзопланет сильно затмевается излучением их материнских звезд, так что анализировать его бывает чрезвычайно трудно, подобно тому, как рассматривать песчинку на фоне света яркой лампы. Но свет, отражаясь от поверхности планеты, частично поляризуется, что позволяет отличить его от света самой звезды. Таким путем мы можем непосредственно выделить ту долю излучения, которая была отражена планетой, и вести его анализ».

Таким путем ученые показали, что на Земле имеются облака, что значительная часть ее поверхности покрыта океанами, и — главное — что здесь происходят химические процессы, которые можно связать с деятельностью растений и фотосинтезом.

«Обнаружение внеземной жизни целиком зависит от двух факторов, — резюмирует Энрик Палле, — во-первых, от ее существования, а во-вторых, от наших технических возможностей ее заметить. Наша работа — еще один шаг к достижению этих возможностей».

Источник

Лунное отражение

Такая непривычная раскраска Луны получилась после совмещения двух изображений: на обычную фотографию Луны (полученную в оптическом диапазоне) наложено смоделированное излучение на длине волны 150 МГц, которое могла бы отражать в сторону Земли лунная поверхность, если бы она была идеально гладкой. Яркая желтая полоса — это синхротронное излучение электронов межзвездной среды в магнитном поле Млечного Пути. В этом диапазоне Луна отражает примерно 7% от попадающей на ее поверхность электромагнитной энергии. Отраженные радиоволны повышают «яркость» Луны на этой частоте примерно на 14%.

Стоит отметить, что если «посмотреть» на Луну в радиотелескоп на такой длине волны, то видна будет совсем не такая четкая картинка. Сигнал от отраженного синхротронного излучения будет сильно забит помехами: само оно будет рассеиваться на лунной поверхности, а еще довольно сильный эффект будет вносить отражение Луной радиоволн, имеющих земное происхождение (в частности, волн в диапазоне FM, в котором идет вещание большинства радиостанций).

Этот эффект больше всего известен по своей «оптической ипостаси», которая называется пепельным светом Луны: за несколько дней до новолуния и в течение нескольких дней после него, в то время, когда Луна есть на небе, а Солнца нет (например, сразу после заката), можно разгядеть полный лунный диск, который подсвечивается солнечным светом, отразившимся от поверхности Земли (подробнее об этом можно прочитать в картинке дня «Неомения и пепельный свет Луны»). Радиотелескопы позволяют непосредственно наблюдать отражение земных радиоволн от Луны.

Радиоволны (на частоте 68 МГц), имеющие земное происхождение, которые отражены лунной поверхностью обратно и зафиксированы радиоинтерферометром LOFAR. Слева вверху — полное изображение: Луна видна как темное пятно в центре, отраженный сигнал — яркое пятно в центре Луны, окружает это все фоновое излучение Млечного Пути. Цветом показана плотность потока излучения. Изображение из статьи H. K. Vedantham et al., 2015. Lunar occultation of the diffuse radio sky: LOFAR measurements between 35 and 80 MHz

Смоделированное отраженное излучение, которое было использовано на верхнем изображении, взято из недавней статьи с длинным названием Measuring the global 21-cm signal with the MWA-I: improved measurements of the Galactic synchrotron background using lunar occultation. Зачем же авторам этой работы понадобилось предсказывать изменение яркости Луны в радиодиапазоне, вызванное излучением, порожденным нашей Галактикой?

Читайте также:  За какое время свет от луны доходит до земли

Дело тут в стремлении ученых разобраться с начальными этапами эволюции Вселенной. После рекомбинации (см. Recombination), когда из-за расширения и остывания Вселенной электроны и протоны смогли соединяться и образовывать атомы, Вселенная стала электронейтральной: практически ничего не излучало и не поглощало свет, из-за чего это время называют Темными веками (Dark ages, мельком об этом говорилось в задаче «Очень темные дела»). Постепенно огромные газовые облака, состоящие из водорода (и небольшого количества гелия), начали уплотняться и сжиматься под действием собственной гравитации — зажглись первые звезды, появились звездные скопления и галактики. Звезды излучали энергичные фотоны, которые стали вновь ионизировать межзвездный газ нашей Вселенной, — началась реионизация. Мы и сейчас живем во Вселенной, где большая часть газа в межзвездной и межгалактической среде находится в ионизированном состоянии.

Темные века таят очень много загадок. В частности, хотя общая картина происходившего примерно понятна, до сих пор остаются открытыми вопросы об образовании первых звезд и галактик, о появлении первых скоплений, сверхмассивных черных дыр и активных галактических ядер. Ответ на них следует искать именно в изучении сигналов, дошедших до нас из этой эпохи. Проблема в том, что нейтральный водород практически ничего не излучает и не поглощает, и это сильно затрудняет наблюдения.

Однако один очень полезный вид излучения всё же есть. Это излучение нейтрального водорода на длине волны 21 см (частота 1420 МГц), возникающее в атомарном водороде из-за «переворота» спина электрона относительно спина протона. С его помощью, в частности, в 60-е годы XX века удалось картографировать спиральные рукава Млечного Пути.

Карта Млечного Пути, составленная по итогам анализа излучения нейтрального водорода в 1959 году Яном Оортом. Изображение из статьи J. H. Oort, 1959. A summary and assessment of current 21-cm results concerning spiral and disk structures in our galaxy

Так почему же нельзя на этой длине волны увидеть излучение водорода, испущенное в Темные века? Дело в том, что из-за расширения Вселенной длина волны излучения, испущенного в какой-нибудь момент времени, постепенно увеличивается. Степень этого увеличения описывается параметром красного смещения \(z\) (выражающим относительное изменение длины волны \(\Delta \lambda/\lambda\)). Так, излучение горячего газа, которое было испущено еще до рекомбинации с длиной волны несколько микрон, мы видим сейчас как космический микроволновой фон на длине волны несколько миллиметров (так как красное смещение для такого излучения примерно равно 1100).

Так как для реионизации красное смещение составляет \(z\sim 10\), излучение, испущенное в те времена на длине волны 21 см, приходит к нам с длиной волны 210 см. С частотами происходит обратное: изначальная частота 1420 МГц превращается примерно в 142 МГц. Проблема в том, что на таких частотах очень сильно излучают электроны в магнитном поле нашей Галактики: они на 5–6 порядков ярче. Сложность этой задачи — поймать на таком фоне редкие фотоны, долетевшие до нас из молодой Вселенной, — сравнима с задачей услышать писк комара рядом с включенным двигателем реактивного самолета.

Чувствительность и точность (разрешающая способность) радиотелескопов пропорциональны размеру «собирающей» поверхности, однако содержать слишком большие телескопы тяжело и дорого, поэтому наблюдатели придумывают различные ухищрения, чтобы увеличивать точность, но не строить огромные «тарелки». Один из вариантов — использовать радиоинтерферометрию: несколько радиотелескопов в разных уголках Земли (и даже в космосе, см. Радиоастрон), работают вместе как один большой телескоп. Точность при этом примерно такая же, как была бы у гиганта с размерами, сравнимыми с расстоянием между телескопами. У интерферометров, правда, довольно плохая чувствительность.

В 1999 году было предложено использовать Луну для наблюдений на радиоинтерферометрах. Спутник Земли — отличная «мишень» для калибровки приборов, а из-за того, что Луна блокирует часть радиоизлучения неба, радиоинтерферометр становится чувствительным не к абсолютной яркости неба, а к разности яркости неба и Луны (в радиодиапазоне), что значительно повышает точность.

Читайте также:  Как фотографировали обратную сторону луны

Но чтобы такой метод работал, нужно уметь предсказывать «радиояркость» Луны с очень хорошей точностью. Для этого ученые и выполняют моделирование, подобное тому, что показано на верхнем изображении.

Источник

Отражение света

Отражение — физический процесс взаимодействия волн или частиц с поверхностью, изменение направления волнового фронта на границе двух сред с разными оптическими свойствами в котором волновой фронт возвращается в среду, из которой он пришёл.

  • Примеры: отражение света, звука, волн на воде.

Содержание

История

Впервые закон отражения упоминается в «Катоптрике» Евклида, датируемой примерно 300 до н. э.

Законы отражения. Формулы Френеля

Закон отражения света — устанавливает изменение направления хода светового луча в результате встречи с отражающей (зеркальной) поверхностью: падающий и отраженный лучи лежат в одной плоскости с нормалью к отражающей поверхности в точке падения, и эта нормаль делит угол между лучами на две равные части. Широко распространённая, но менее точная формулировка «угол падения равен углу отражения» не указывает точное направление отражения луча. Тем не менее, выглядит это следующим образом:

Этот закон является следствием применения принципа Ферма к отражающей поверхности и, как и все законы геометрической оптики, выводится из волновой оптики. Закон справедлив не только для идеально отражающих поверхностей, но и для границы двух сред, частично отражающей свет. В этом случае, равно как и закон преломления света, он ничего не утверждает об интенсивности отражённого света.

Механизм отражения

При попадании электромагнитной волны на проводящую поверхность возникает ток, электромагнитное поле которого стремится компенсировать это воздействие, что приводит к практически полному отражению света.

Виды отражения

Отражение света может быть зеркальным (то есть таким, как наблюдается при использовании зеркал) или диффузным (в этом случае при отражении не сохраняется путь лучей от объекта, а только энергетическая составляющая светового потока) в зависимости от природы поверхности.

Зеркальное О. с. отличает определённая связь положений падающего и отражённого лучей: 1) отражённый луч лежит в плоскости, проходящей через падающий луч и нормаль к отражающей поверхности; 2) угол отражения равен углу падения j. Интенсивность отражённого света (характеризуемая отражения коэффициентом) зависит от j и поляризации падающего пучка лучей (см. Поляризация света), а также от соотношения преломления показателей n2 и n1 2-й и 1-й сред. Количественно эту зависимость (для отражающей среды — диэлектрика) выражают формулы Френеля. Из них, в частности, следует, что при падении света по нормали к поверхности коэффициент отражения не зависит от поляризации падающего пучка и равен

В очень важном частном случае нормального падения из воздуха или стекла на границу их раздела (nвозд » 1,0; nст = 1,5) он составляет » 4 %.

Характер поляризации отражённого света меняется с изменением j и различен для компонент падающего света, поляризованных параллельно (р-компонента) и перпендикулярно (s-компонента) плоскости падения. Под плоскостью поляризации при этом понимается, как обычно, плоскость колебаний электрического вектора световой волны. При углах j, равных так называемому углу Брюстера (см. Брюстера закон), отражённый свет становится полностью поляризованным перпендикулярно плоскости падения (р-составляющая падающего света полностью преломляется в отражающую среду; если эта среда сильно поглощает свет, то преломленная р-составляющая проходит в среде очень малый путь). Эту особенность зеркального О. с. используют в ряде поляризационных приборов. При j, больших угла Брюстера, коэффициент отражения от диэлектриков растет с увеличением j, стремясь в пределе к 1, независимо от поляризации падающего света. При зеркальном О. с., как явствует из формул Френеля, фаза отражённого света в общем случае скачкообразно изменяется. Если j = 0 (свет падает нормально к границе раздела), то при n2 > n1 фаза отражённой волны сдвигается на p, при n2 Полное внутреннее отражение

При увеличении угла падения i , угол преломления тоже увеличивается, при этом интенсивность отраженного луча растет, а преломленного — падает (их сумма равна интенсивности падающего луча). При каком-то значении i = ik угол r = π / 2 , интенсивность преломленного луча станет равной нулю, весь свет отразится. При дальнейшем увеличении угла i > ik преломленного луча не будет, происходит полное отражение света.

Значение критического угла падения, при котором начинается полное отражение найдем, положим в законе преломления r = π / 2 , тогда sinr = 1 , значит:

Источник

Космос, солнце и луна © 2023
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.

Adblock
detector