Формулы радиуса, орбитальной скорости и периода пл
Формулы для расчета радиуса, скорости орбитального движения и периода планет.
При расчетах используются величины:
— радиус орбиты R (при условном круговом движении) в а.е.
— период T (земной год)
— орбитальная скорость V а.е./год
1. Соотношение радиуса и скорости.
Произведение радиуса и квадрата скорости для всех планет одинаково.
R V2 = const
(получается от преобразований третьего закона Кеплера: R3/ T2 const)
R V2 = R V2 — для разных радиусов обрит разных планет и разных радиусов кривизны одной планеты.
производим вычисления:
для Земли — 1 х 6.28 х 6.28 / 1 = 39.434
где V — 2х 3.14 х R / T 2 х 3.14 х 1 : 1 = 6.28 а.е. /год
для Марса 1.532 х 5.07 х 5.07 = 39.379
скорость для марса : 2 х 3.14 х 1.52 : 1.88 = 5, 07 а.е. / год
радиус орбиты Марса взят средний — он колеблется от 1.405 (перигелий) до 1.693 (афелий)
для Юпитера 5.2 х 2.75 х 2.75 = 39.325
скорость 2 х 3.14 х 5.2 : 11.86 = 2.75 а.е. / год
2. Соотношение радиуса и периода.
Для вычисления периода по радиусу орбиты можно использовать следующую формулу:
Радиус, умноженный на корень квадратный из радиуса, дает период.
(Если единица измерения радиуса — а.е.
то период получается в земных годах.)
получается, что для каждой планеты есть некое число, которое умноженное на себя дает радиус орбиты, а умноженное на себя еще раз — дает период.
Для Марса это число примерно 1.232, для Юпитера 2.28, для Урана 4.38,
для Плутона 6.26 , для Венеры 0.85
Получается числовой ряд планет:
Меркурий 0.62 0.387 0.24
Венера 0.85 0.723 0.615
Земля 1 1 1
Марс 1.232 1.52 1.88
Юпитер 2.28 5.2 11.86
Сатурн 3.09 9.58 29.6
Уран 4.38 19.18 84.048
где: первое это некое базовое число; второе радиус; третье период.
зависимость:1 — число, 2- число возведенное в квадрат, 3- возведенное в куб.
Базовое число планеты — соотношение скоростей Земли и планеты.
А соотношение скоростей Земли и планеты получается из соотношения квадратных корней радиусов этих планет.
Теперь, если взять, например, орбитальную скорость Земли за единицу,
то орбитальная скорость Земли относительно скорости Марса 1.2328.
тогда: радиус обриты Марса есть 1.2328 х 1.2328 = 1.52 а.е.
а период орбиты Марса 1.52 = 1.2328 = 1.8739 в земных годах
что в упрощенной записи :
Vз : V м (Vз :V м ) 2 = R (Vз :V м ) 2 х R = T
или n , далее n в квадрате и n в кубе.
где n Vз :V м — отношение скоростей Земли и Марса.
R V2 = const (получается от преобразований третьего закона Кеплера)
4. Квадрат движения.
Для понимания сути движения планет интересно сделать ещё и такое построение.
Все планеты СС одновременно движутся по своим орбитам. Если взять некий общий отрезок времени,то каждая из планет пройдет за это время по орбите своё раcстояние.
Если на основе этого расстояния, построить квадрат, то площадь этого квадрата для каждой планеты будет пропорциональна орбитальной скорости.
И, если площадь этого квадрата умножить на радиус орбиты, то для всех планет получится одинаковое число, выражающее объём.
И получиться некая константа трехмерного пространства.
Это можно выразить так:
Квадрат расстояния пройденной каждой планетой за общую единицу времени обратно пропорционален радиусам их орбит или произведение радиуса обриты на квадрат расстояния для всех планет за общую единицу времени есть величина одинаковая.
5. Период соединения.
Есть ещё одна формула которая позволяет вычислить через какое время произойдет соединение планет планеты.
Т1 х Т2 / Т2-Т1
6. И, конечно, каждая планета за одну единицу времени проходит угол (сектор), который по отношению к земному, обратно пропорционален периодам.
Формулы могут применяться и для расчета параметров движения спутников.
На рисунке: Таблица соотношения параметров планет Солнечной системы относительно Земли.
комментарии к таблице.
Данные для других планет выражен по отношению к параметрам дв. Земли.
Соотношение скоростей мы понимаем, как соотношение путей пройденных планетой по своей орбите за единицу времени. Соотношение скоростей, возведенное в квадрат дает соотношение радиусов, а возведенное в куб — соотношение периодов планет.
Источник
Как находить период обращения планеты вокруг солнца
Цель работы: изучение движения тел под действием сил тяготения; проверка третьего закона Кеплера.
На смену геоцентрической системе мира, созданной в начале нашей эры Птолемеем, пришла гелиоцентрическая система, созданная Коперником. Несколько позднее немецкий астроном И. Кеплер на основе астрономических наблюдений установил законы движения планет вокруг Солнца.
Согласно 1-му закону Кеплера любая планета движется вокруг Солнца по замкнутой кривой, которая называется эллипсом (внешне похож на овал). Солнце находится в одном из фокусов этого эллипса. Эллипс имеет два фокуса: это две такие точки внутри кривой, сумма расстояний от которых до произвольной точки эллипса постоянна. Оказывается, что орбиты всех планет Солнечной системы лежат примерно в одной плоскости. Большинство планет движутся по орбитам-эллипсам, которые близки к окружностям. Лишь Марс и Плутон имеют сравнительно вытянутые орбиты.
Второй закон Кеплера устанавливает, что скорость планеты больше тогда, когда она в своем движении находится ближе к Солнцу (в так называемой точке перигелия) и меньше тогда, когда она находится на наибольшем расстоянии от Солнца (в точке афелия). Третий закон Кеплера устанавливает связь между периодом обращения планеты вокруг Солнца и ее средним расстоянием от Солнца, он применяется ко всему коллективу планет Солнечной системы.
Законы Кеплера получили свое объяснение лишь после открытия законов тяготения. Физические объекты участвуют в гравитационном взаимодействии, т.е. они притягиваются друг к другу. Гравитационное взаимодействие обладает всеобщей универсальностью: ему подвержены все материальные объекты и даже физические поля. Закон всемирного тяготения был открыт И. Ньютоном. Он утверждает, что два неподвижных точечных тела взаимодействуют друг с другом с силой, пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними, т.е.
где γ называют гравитационной постоянной. Этот закон справедлив и для взаимодействия однородных шаров, но в этом случае под r следует понимать расстояние между их центрами.
Рассмотрим движение планеты вокруг Солнца (рис. 1). Планета движется под действием силы F (силы тяготения (1)), которая действует вдоль линии, соединяющей центры тел. Движением Солнца можно пренебречь, так как его масса М гораздо больше массы планеты m. Пусть орбита планеты представляет собой окружность, тогда скорость движения планеты направлена по касательной к этой окружности и перпендикулярно действующей силе. Скорость в этом случае постоянна по величине, поэтому планета движется с центростремительным ускорением. Второй закон Ньютона для этого движения выглядит следующим образом:
Отсюда получаем, что . Период обращения планеты вокруг Солнца
. Выразив из предыдущей формулы v, получаем
. Возведя правую и левую части этой формулы в квадрат, после преобразований получим:
(2) |
Это и есть третий закон Кеплера, который можно сформулировать следующим образом: отношение куба расстояния от планеты до Солнца к квадрату периода ее обращения вокруг Солнца есть величина постоянная, одинаковая для всех планет Солнечной системы. В случае движения по эллипсу, когда расстояние от планеты до Солнца при движении изменяется, в законе фигурирует некоторое среднее расстояние, т.е. полусумма максимального и минимального расстояний от данной планеты до Солнца. Закон Кеплера справедлив для любой планетной системы, а также для системы спутников какой-либо конкретной планеты, например, для системы спутников Юпитера или Урана. В последнем случае под М в формуле (2) понимается масса соответственно Юпитера или Урана.
Источник