Меню

Как движутся планеты вокруг солнца петлеобразно

Истинное движение планет и законы Кеплера

Видимые петлеобразные движения планет Коперник объяснял сочетанием движения Земли с движением каждой планеты вокруг Солнца. Так как периоды обращения Земли и любой планеты неодинаковы, то бывает, что, например, Земля обгоняет планету, и тогда планета кажется смещающейся относительно звезд к западу. В другое же время движения их складываются так, что планета кажется перемещающейся к востоку.

Это поясняет рисунок 20, где стрелки показывают направление обращения Земли и планеты, которая дальше от Солнца, чем Земля, и движется медленнее. Прямые линии соединяют одновременные положения Земли и планеты и указывают направление, по которому планета видна с Земли при разных ее положениях на орбите. Стрелки у видимого пути планеты показывают, как при этом меняется направление ее видимого движения.

Рисунок 20 — Видимое петлеобразное движение планеты (происходит вследствие сочетания движения планеты и наблюдателя вместе с Землей).

Коперник определил периоды обращения планет и их расстояния от Солнца по сравнению с расстоянием Земли от Солнца.

Взаимное расположение Земли и планет все время меняется. Например, планета, более далекая от Солнца, чем Земля, по отношению к последней может быть за Солнцем (Рисунок 21), а планета, более близкая,- между Землей и Солнцем или тоже за ним. В этих положениях планеты нам не видны, так как скрываются в лучах Солнца. Планету, более далекую от Солнца, чем Земля, лучше всего наблюдать, когда она видна в стороне, противоположной Солнцу. Тогда она ближе к Земле и хорошо видна в телескоп. В эту пору она кульминирует в полночь и долго видна в течение дня. Положение планеты, противоположное Солнцу по отношению к Земле, называется противостоянием.

Рисунок 21 — Противостояния и наибольшие удаления планеты от Солнца.

Для планеты, более близкой к Солнцу, чем Земля, угол между направлениями с Земли на нее и на Солнце меняется, не превосходя 29°для Меркурия и 48° для Венеры. При наибольшем угловом расстоянии между Солнцем и такой планетой ее удобнее всего наблюдать — она позднее заходит вечером после Солнца или раньше восходит утром перед восходом Солнца, смотря по тому, с какой стороны от Солнца мы ее видим. Как показывает рисунок 22, вид Меркурия и Венеры меняется, как у Луны. Это зависит от того, как повернуто к нам освещенное Солнцем полушарие этих планет.

Рисунок 22 — Изменения фазы и видимого диаметра Меркурия и Венеры в зависимости от их положения относительно Земли и Солнца.

Коперник установил, что центром движения Земли и планет является Солнце, но точно установить истинную форму орбит планет он не мог. Как все ученые и философы древности, Коперник считал, что в небесах все движения равномерны и траектории этих движений — окружности. Поэтому подлинные движения планет теория Коперника отражала едва ли точнее, чем теория Птолемея.

Причину этого несоответствия выяснил в начале XVII в. австрийский ученый Иоганн Кеплер (1571 -1630). Кеплер установил три закона планетных движений, которые он вывел из наблюдаемых перемещений планет по небесной сфере.

Первый закон. Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.

Эллипсом называется замкнутая плоская кривая, обладающая тем свойством, что сумма расстояний каждой ее точки от двух точек, называемых фокусами, остается постоянной. На рисунке 23 O — центр эллипса, DA — большая ось, К и S — фокусы эллипса, так что KM+SM=DA равно большой оси эллипса. Чем больше расстояние между фокусами, тем более сжат эллипс при заданной величине его большой оси. Степень вытянутости эллипса характеризуется величиной его эксцентриситета. Эксцентриситетом е называется отношение расстояния OS центра эллипса от одного из фокусов к длине большой полуоси ОА, то есть е = OS : О А.

Эллиптические орбиты планет мало отличаются от окружности, и их эксцентриситеты немногим больше нуля.

Читайте также:  Как работают игрушки от солнца

Из первого закона Кеплера следует, что расстояние планет от Солнца меняется. Ближайшая точка орбиты называется перигелием, а наиболее далекая — афелием.

Орбита Земли тоже эллиптическая. В перигелии Земля бывает в начале января, в афелии — в начале июля. Хотя, таким образом, зима в северном полушарии Земли бывает в период кратчайшего расстояния ее от Солнца, однако различие в угле падения солнечных лучей на поверхность Земли и различие в продолжительности дня летом и зимой влияют сильнее, чем небольшие изменения в расстоянии Земли от Солнца.

Второй закон (закон площадей). Радиус-вектор планеты в равные времена описывает равные площади.

Радиусом-вектором планеты называется отрезок прямой линии, соединяющей планету с Солнцем. Скорость планеты при ее движении меняется так, что площадь, описанная радиусом-вектором за равные промежутки времени, одна и та же, в какой бы части своей орбиты ни находилась планета. На рисунке 23 площади CSD, ESF и ASH равны, если дуги CD, EF, АН описаны планетой за равные промежутки времени. Таким образом, близ перигелия скорость планеты наибольшая, близ афелия — наименьшая.

Рисунок 23 — Закон площадей (второй закон Кеплера).

Третий закон. Квадраты периодов обращений планет относятся, как кубы больших полуосей их орбит.

Если период обращения и большую полуось орбиты одной планеты обозначить соответственно Т1 и а2, а другой планеты — через Т2 и а2, то третий закон Кеплера выразится формулой:

Зная из наблюдений периоды обращения планет, можно но этой формуле определить большие полуоси орбит планет по отношению

к большой полуоси орбиты Земли, принимая полуось орбиты Земли за единицу. Заметим, что длина большой полуоси орбиты планеты равна среднему расстоянию ее от Солнца, так как полусумма расстояний планеты от Солнца в афелии и перигелии равна большой полуоси орбиты планеты; на рисунке 23 DS+AS/2 = OD, где OD — большая полуось. Так как при помощи третьего закона Кеплера все расстояния планет от Солнца можно определить, зная расстояние Земли от Солнца, то длину большой полуоси земной орбиты считают в астрономии единицей расстояний и называют ее астрономической единицей; она равна 149 500 000 км.

Упражнение 1.

1. Марс дальше от Солнца, чем Земля, в 1,5 раза. Чему равен «год» Марса?

2. Период обращения Плутона 250 лет. Чему равна большая полуось его орбиты?

Источник

Видимое движение планет и Солнца

1. Петлеобразное движение планет

Общее представление о строении Солнечной системы вы получили еще в курсе природоведения. Теперь вам предстоит более глубоко изучить строение Солнечной системы, и начнем с описания и анализа наблюдаемого движения планет. Невооруженным глазом можно увидеть пять планет — Меркурий (Мercury), Венеру (Venus), Марс (Mars), Юпитер (Jupiter) и Сатурн (Saturn).

Планету по внешнему виду нелегко отличить от звезды, тем более что не всегда она бывает значительно ярче ее. Планеты относятся к числу тех светил, которые не только участвуют в суточном вращении небесной сферы, но еще и смещаются (иногда незаметно) на фоне зодиакальных созвездий. С этой особенностью планет связано само слово «планета», которым древние греки называли «блуждающие звёзды». Чем лучше вы будете знать звездное небо, тем скорее обнаружите на нем планеты как «лишние» светила в созвездиях. В 8-кратный бинокль (а лучше телескоп!) можно заметить, что Венера, Юпитер, Сатурн имеют диски, в отличие от звезд, которые в оптические инструменты видны как точечные объекты.
Если проследить за перемещением какой-нибудь планеты, например Марса, ежемесячно отмечая его положение на звездной карте, то может выявиться главная особенность видимого движения планеты: планета описывает на фоне звездного неба петлю.

Блуждание планет в зодиакальных созвездиях смог объяснить только Николай Коперник в начале 16 века. Такое видимое отображение на небесной сфере происходит в силу движения Земли и планет с разными скоростями вокруг Солнца. Для описания светил [Луна, Солнце, Планеты], экваториальные координаты которых меняются быстро, используют понятие эклиптики. Эклиптика — это видимый годовой путь центра солнечного диска по небесной сфере. Видимое движение Солнца по эклиптике — это отражение действительного движения Земли вокруг Солнца (доказано лишь в 1728 году Джеймсом Брадлеем открытием годичной аберрации [отклонение от нормы] ).

Читайте также:  Солнце меньше звезд гигантов

Орбитой небесного тела называется траектория его движения во Вселенной . Скорости движения планет по орбитам убывают с удалением планет от Солнца. Плоскости орбит всех планет Солнечной системы лежат вблизи плоскости эклиптики, отклоняясь от нее.

Планеты перемещаются между звездами в основном с запада на восток (как Солнце и Луна), такое их перемещение называют прямым движением . Однако каждая планета в определенное время замедляет свое перемещение, останавливается и начинает двигаться с востока на запад, такое перемещение называют попятным движение . Затем светило опять останавливается и возобновляет прямое движение. Поэтому видимый путь каждой планеты на небосводе — сложная линия с зигзагами и петлями. Эта траектория к тому же меняется от цикла к циклу, в течение которого планета возвращается примерно на одно и то же место среди звезд.

По отношению к орбите и условиям видимости с Земли планеты разделяются на внутренние (Меркурий, Венера) и внешние (Марс, Юпитер, Сатурн, Уран, Нептун). Внешние планеты всегда повернуты к Земле стороной, освещаемой Солнцем. Внутренние планеты меняют свои фазы подобно Луне. Планеты, орбиты которых расположены внутри земной орбиты, называются нижними планетами , а планеты, орбиты которых расположены вне земной орбиты, называются верхними планетами .

Благодаря движению Земли вокруг Солнца, пути внешних (верхних) планет кажутся нам не плавными, кругообразными, какими они являются на самом деле, а зигзаговидными или петлеобразными. Планета сначала быстро бросается вперед, затем останавливается, затем делает попятное движение, снова останавливается и снова делает прыжок вперед и т. д., пока не обойдет кругом всего видимого неба и не начнет следующего обхода такими же скачками, но уже по новому пути.

Для нас, живущих после Коперника, в этом не только нет ничего удивительного, но именно так и должно быть. Поясним такое движение на примере, который может проделать каждый самостоятельно. Я беру в руки карандаш, поднимаю его до уровня своих глаз, прищуриваю один из них и смотрю другим, какое место на стене закрывает кончик этого карандаша?

Затем, оставив карандаш неподвижным, начинаю качать головой, делая ею круговые движения. Мне кажется, что проекция конца карандаша вычеркивает на стене эллипс или двигается взад и вперед. Если же, не переставая кружить своей головой, я буду медленно двигать карандаш на вытянутой вперед руке вокруг себя, то мне будет казаться, что он описывает на стоящей за ним стене совершенно такие же петлеобразные фигуры, как и планета между звездами. Причины в обоих случаях совершенно те же самые. Обращающийся вокруг моей шеи кончик карандаша представляет внешнюю планету, медленно и плавно обращающуюся вокруг солнца, а мой глаз, делающий вместе с головой круговые движения вокруг продолжения моей шеи, представляет землю, тоже обращающуюся вокруг солнца. Когда эта Земля опережает кончик карандаша, мне кажется, что проекция его на стене производит попятное движение, как планета на фоне отдаленных звезд при тех же обстоятельствах. Когда же глаз отойдет при качании моей головы в противоположную сторону от кончика карандаша, мне кажется, что его проекция движется на стене вперед ускоренным путем.

Николай Коперник указал, что Земля, занимая третье место от Солнца, так же, как и другие планеты, движется в пространстве вокруг Солнца и одновременно вращается вокруг своей оси. Эта система Коперника очень просто объясняла петлеобразное движение планет. У каждой планеты своя орбита и потому разный период обращения планет вокруг Солнца, а значит скорость движения планет вокруг Солнца и относительно друг друга неодинакова. На рисунке ниже показано движение Марса на небесной сфере, наблюдаемое с Земли. Одинаковыми цифрами отмечены положения Марса, Земли и точек траектории Марса на небосводе в одни и те же моменты времени.

Читайте также:  Как подогнуть подол юбки солнце

В астрологии такое движение планет называется ретроградным:

Таким образом петлеобразное движение определяется взаимным расположением планет.

2. Конфигурация планет

Конфигурациями называются некоторые характерные взаимные расположения планет, Земли и Солнца. Конфигурации нижних и верхних планет различны, так как различны условия их видимости. Видимость планеты зависит от её расположения к Солнцу, которое освещает планету, и Земли, с которой мы эту планету наблюдаем.

Для нижних планет выделяют соединения (нижние и верхние) и элонгации (восточные и западные)

Для верхних планет выделяют соединение, противостояние и квадратура .

Конечно же из-за обращения всех планет вокруг Солнца их конфигурации периодически повторяются. А промежуток времени между двумя последовательными одноименными конфигурациями планеты называется синодическим периодом (от греч. σύνοδος — соединение) . Проще говоря, это промежуток времени, по истечении которого планета (или другое тело Солнечной системы) для наблюдателя с Земли возвращается в прежнее положение относительно Солнца.

Синодические периоды планет были рассчитаны ещё в глубокой древности, когда считалось, что все тела обращаются вокруг Земли. Однако мы уже знаем, что Земля не является неподвижным телом, а вместе с остальными планетами движется вокруг Солнца. Так вот, промежуток времени, в течение которого планета совершает один полный оборот вокруг Солнца по орбите относительно звёзд, называется сидерическим (звёздным) периодом (от лат. sidus — звезда; род. падеж sideris ). Часто, для простоты, сидерический период называют годом. К примеру, Земной год, Меркурианский год, Юпитерианский год и так далее.

Сидерический период обращения планеты вокруг Солнца с движущейся Земли определить невозможно, так как к его окончанию Земля успевает сместиться в новую точку пространства, и проекция планеты на фон неподвижных звёзд также оказывается смещённой. Получится, что планета может не дойти либо перейти ту точку среди звёзд, откуда было замечено начало её движения. Но между синодическим (то есть видимым) и сидерическим (то есть истинным) периодами планет существует взаимосвязь. Установим её:

Уравнение синодического движения верхних планет можно получить аналогичными рассуждениями. Единственное отличие состоит в том, что их сидерический период обращения больше сидерического периода Земли. Поэтому для верхних планет уже Земля, забега вперёд, совершает один оборот вокруг Солнца и догоняет планету.

3. Сутки в асторономии

Продолжительность суток на планете зависит от угловой скорости её собственного вращения. В астрономии различают несколько типов суток, в зависимости от системы отсчёта. Если в качестве точки отсчёта вращения выбрать далёкую звезду, то, в отличие от центрального светила планетной системы, такие сутки будут иметь иную продолжительность. Например, на Земле различают средние солнечные сутки (24 часа) и звёздные, или сидерические сутки (приблизительно 23 часа 56 минут 4 секунды). Они не равны друг другу, потому что, из-за орбитального движения Земли вокруг Солнца, для наблюдателя, находящегося на поверхности Земли, Солнце смещается на фоне далёких звёзд.

Звёздные сутки — период вращения какого-либо небесного тела вокруг собственной оси в инерциальной системе отсчёта , за которую обычно принимается система отсчёта, связанная с удалёнными звёздами. Для Земли это время, за которое Земля совершает один оборот вокруг своей оси по отношению к далёким звёздам. На выше приведенном рисунке: 1-2 — звёздные сутки.

Солнечные сутки — промежуток времени, за который небесное тело совершает 1 поворот вокруг своей оси относительно центра Солнца . На выше приведенном рисунке: 1-3 — солнечные сутки.

Источник

Adblock
detector