Меню

Изучаем землю с космоса

МКС онлайн трансляция с орбиты в реальном времени

Онлайн видео с Международной космической станции включает в себя обзор космической станции изнутри, когда экипаж дежурит и Земли в другое время. Видео сопровождается аудио переговорами между экипажем и центром управления. Станция совершает один оборот вокруг Земли за 90 минут и примерно половину этого времени она проводит в тени Земли, где солнечные батареи не работают, темный экран, во время трансляции или трансляция записи (OFFAIR). Иногда трансляция может прерываться, синий экран, по техническим причинам, см. вопросы и ответы.

Положение спутника показано на карте трекинге, а на сайте NASA вы можете рассчитать траекторию полета МКС над вашим городом. Темный экран = Международная космическая станция (МКС) находится на ночной стороне Земли.

Международная космическая станция (МКС)

Как можно увидеть онлайн Землю со спутника? Оказывается, посмотреть на Землю онлайн, в реальном времени, уже возможно. Произошло это благодаря МКС (Международной космической станции), работающей на орбите Земли.

Итак. Чтобы увидеть Землю из космоса в реальном времени вам не нужно «далеко ходить» :). Это можно сделать прямо у нас на сайте. Официальный портал НАСА предоставляет нам возможность увидеть прямую трансляцию изображения нашей планеты Земля со спутника онлайн. Видео изображение встроено в данную статью (см. выше).

Онлайн видео Земли с космической станции в реальном времени, представляет собой изображение Планеты Земля с внешней вебкамеры, установленной на Международной Космической Станции. Иногда, камера транслирует изображение внутренних помещений станции. Вебкамера не транслирует изображение Земли весь день.

Когда видео-картинка Земли с веб-камеры недоступна, на ее месте вы увидите фотографию, карту Земли или трансляцию НАСА ТВ.

(Необходимо подождать пару минут для начала трансляции видео изображения)

Так как станция вращается вокруг Земли один раз каждые 90 минут, астронавты видят восход солнца или закат каждые 45 минут. Когда станция находится в темноте, видео с внешней камеры может оказаться черным, но может, иногда, захватить изображение городских огней на Земле.

В нулевом приближении можно считать, что Земля имеет форму шара со средним радиусом 6371,3 км. . Из-за суточного вращения она сплюснута с полюсов; высоты материков различны; форму поверхности искажают и приливные деформации. В геодезии и космонавтике для описания фигуры Земли обычно выбирают эллипсоид вращения или геоид.

Итак, с помощью современных технологий и NASA мы уже сегодня, имеем возможность приобщиться к великой миссии освоения космоса человеком!

Технические характеристики:

  • Начало эксплуатации 20 ноября 1998 года
  • Масса: 417 289 кг
  • Длина: 109 м
  • Ширина: 73,15 м (с фермами)
  • Высота: 27,4 м (на 22.02.2007)
  • Жилой объём: 916 м³
  • Давление: 1 атм.
  • Температура:

26,9 °C (в среднем)

  • Электрическая мощность солнечных батарей: 110 кВт
  • Список долговременных экспедиций МКС

    ISS HDEV эксперимент (завершен)

    27.11.2020 — ISS HDEV эксперимент завершен. В настоящее время прямое видео с Земли транслируется с внешней камеры высокого разрешения (Камера 1), установленной на МКС. Камера смотрит на Землю, иногда сквозь нее проходит солнечная панель.

    В настоящее время прямые трансляции с МКС транслируются с внешней камеры, установленной на модуле МКС, под названием Узел 2 (Node 2). Узел 2 (Node 2) расположен в передней части МКС. Камера смотрит вперед под углом, чтобы был виден международный стыковочный адаптер 2 (IDA2). Если камера узла 2 недоступна из-за эксплуатационных соображений в течение более длительного периода времени, будет отображаться непрерывный цикл записанных изображений HDEV. Цикл будет иметь отметку «Ранее записано» на изображении, чтобы отличить его от прямого потока с камеры Узла 2. После того, как HDEV перестал отправлять какие-либо данные 18 июля 2019 года, 22 августа 2019 года было объявлено, что срок его службы истек.

    Эксперимент по наблюдению за Землей в высоком разрешении (HDEV), установленный на внешнем объекте полезной нагрузки МКС модуля Колумбус Европейского космического агентства, был активирован 30 апреля 2014 года, и через 5 лет и 79 дней его просмотрели более 318 миллионов зрителей по всему миру только на USTREAM.

    20.11.2019 — ISS HDEV снова доступен. В разработке находится HDEV 2 с ещё более крутыми камерами.

    18.07.2019 — ISS HDEV недоступен

    Ответ NASA: The High Definition Earth-Viewing (HDEV) experiment on the International Space Station has experienced a loss of data, and ground computers are no longer receiving communications from the payload. A team of engineers are reviewing the available health and status information from HDEV to identify what may have occurred. Additional updates will be published as they become available. Unfortunately there is no timeline for when/if HDEV will be back up.

    Эксперимент по наблюдению Земли в высоком разрешении (HDEV) на Международной космической станции привел к потере данных, и наземные компьютеры больше не получают данные. Команда инженеров просматривает доступную информацию о состоянии HDEV, чтобы определить, что могло произойти. Дополнительные обновления будут публиковаться по мере их появления. К сожалению, нет даты, когда / если HDEV будет восстановлен.

    На МКС установили 4 HD-камеры, картинка с которых в прямом эфире транслируется в интернете. HD камеры HDEV на МКС между собой переключаются с определенным интервалом. Когда одна камера транслирует видео, остальные ждут своей очереди. Вы можете увидеть HD трансляцию на ISS HDEV, а на ISS Stream идет трансляция с камер которые расположены снаружи МКС и внутри станции (не путайте их с HDEV).

    High Definition Earth Viewing (HDEV) эксперимент на борту МКС был активирован 04.30.14. Этот эксперимент включает в себя несколько коммерческих HD видеокамер, направленных на Землю, которые закрыты в герметичном и с контролируемой температурой корпусе. Видео с этих камер передается обратно на Землю, а также транслируется в прямом эфире на этом канале. В то время как эксперимент находится в рабочем состоянии, просмотры, как правило, последовательны, хотя с различных камер. Между переключением камер, появляется серый цвет, или черный фон. Когда МКС в тени видео может прерываться, следите за картой чтобы быть в курсе. Анализ этого эксперимента будет проводиться для оценки влияния космической среды на оборудование и качество видео, для будущих миссий.

    Источник

    Исследование Земли

    Речь идет о родной планете, поэтому давайте посмотрим, как проходило исследование Земли. Большую часть земной поверхности успели изучить к началу 20-го века, включая внутреннее строение и географию. Загадочными оставались Арктика и Антарктика. Сегодня практически все участки удалось запечатлеть и нанести на карту благодаря фотографическому картированию и радиолокаторам. Одной из последних исследованных областей был полуостров Дариен, расположенный между Панамским Каналом и Колумбией. Ранее выполнить обзор было сложно из-за постоянных дождей, густой растительности и плотного облачного покрова.

    Спутниковое изображение Скоресби-Санд (Гренландия)

    Изучение глубинных особенностей планеты долгое время не проводили. До этого занимались исследованием поверхностных формирований. Но после Второй мировой войны принялись за геофизические исследования. Для этого использовали специальные датчики. Но так можно было рассмотреть ограниченную часть подповерхностного слоя. Получалось пробраться лишь под верхнюю кору. Максимальная глубина скважины – 10 км.

    Основные цели и достижения при исследовании Земли

    В исследовании Земли учеными движет научное любопытство, а также экономическая выгода. Население увеличивается, поэтому растет спрос на ископаемые, а также воду и прочие важные материалы. Многие подземные операции проводят для поиска:

    • нефти, угля и природного газа;
    • коммерческих (железо, медь, уран) и строительных (песок, гравий) материалов;
    • подземных вод;
    • пород для инженерного планирования;
    • геотермальных запасов для электричества и отопления;
    • археологии;

    Также возникла необходимость в создании безопасности через туннели, хранилища, ядерные реакции и плотины. А это приводит к необходимости уметь предсказать силу и время землетрясения или уровень подповерхностной воды. Активнее всего землетрясениями и вулканами занимается Япония и США, потому что эти страны чаще всего переносят подобные бедствия. Периодически скважины бурят для профилактики.

    Методология и инструменты исследовании Земли

    Следует знать, какие существуют методы исследования планеты Земля. В геофизике используют магнетизм, гравитацию, отражательные способности, упругие или акустические волны, тепловой поток, электромагнетизм и радиоактивность. Большая часть замеров осуществляется на поверхности, но есть спутниковые и подземные.

    Важно понимать, что находится внизу. Иногда не удается добыть нефть только из-за блока другим материалом. Выбор метода основывается на физических свойствах.

    Дистанционное зондирование

    Используется ЭМ-излучение от земли и отраженная энергия в разнообразных спектральных диапазонах, добытых самолетами и спутниками. Методы основываются на использовании комбинаций изображений. Для этого участки фиксируют с разных траекторий и создают трехмерные модели. Их также выполняют с интервалами, что позволяет проследить изменение (рост урожая за сезон или перемены от шторма и ливня).

    Радарные лучи пробиваются сквозь облака. Боковой видимый радиолокатор отличается чувствительностью к перемене поверхностного наклона и шероховатости. Оптико-механический сканер регистрирует теплую ИК-энергию.

    Чаще всего используют технику Landsat. Эти сведения добываются мультиспектральными сканерами, размещенными на некоторых американских спутниках, расположенных на высоте в 900 км. Кадры охватывают площадь 185 км. Используется видимый, ИК, спектральный, зеленый и красный диапазоны.

    Часть долины Магдалена (Колумбия)

    В геологии эту технику применяют для вычисления рельефа, обнажения горных порог и литологии. Также удается фиксировать перемены в растительности, породах, находить подземные воды и распределение микроэлементов.

    Магнитные методы

    Не будем забывать о том, что исследования Земли проводят из космоса, предоставляя не только фото планеты, но и важные научные данные. Можно вычислить полное земное магнитное поле или же конкретных компонентов. Наиболее старый метод – магнитный компас. Сейчас используют магнитные балансы и магнитометры. Протонный магнитометр вычисляет радиочастотное напряжение, а оптико-накачивающий отслеживает наименьшие магнитные флуктуации.

    Перед вами засушливая территория Сахары, а более темные места – растительность влажного и полузасушливого леса Сахель. На заднем плане отмечены темно-зеленые болота острова Чад. Простирается на 200 км и представлены небольшим остатком гигантского леса. Озерный бассейн охватывает 1000 км от переднего плана до подножия тибетских гор.

    Магнитные съемки проводят магнитометрами, летающими на параллельных линиях с удаленностью в 2-4 км и на высоте в 500 м. Наземные исследования рассматривают магнитные аномалии, произошедшие в воздухе. Могут размещаться на специальных станциях или перемещающихся кораблях.

    Магнитные эффекты формируются из-за намагниченности, созданной осадочными породами. Скалы не способны удерживать магнетизм, если температура превышает 500°C, а это ограничение для глубины в 40 км. Источник должен располагаться глубже и ученые полагают, что именно конвекционные токи генерируют поле.

    Методы гравитации

    Космические исследования Земли включают различные направления. Гравитационное поле можно определить через падение любого объекта в условиях вакуума, вычисление периода маятника или другими способами. Ученые используют гравиметры – вес на пружине, способной растягиваться и сжиматься. Они действуют с точностью до 0.01 миллиграмма.

    Слева видите вулкан Килауэа с вытянутыми завихрениями вулканических газов (сверху), простирающихся на запад от формирования. Члены экипажа специально обучаются снимать подобные дымки под наклоном, чтобы улучшить качество обзора. Галогеновый туман (сочетание тумана, вулкана и смога) – привычное дело для гавайцев и относится к разновидности воздушного загрязнения. Появляется, когда двуокись серы и прочие газы от вулканической активности смешиваются с кислородом, влагой и солнечными лучами.

    Отличия в гравитации происходят из-за локальной плоскости. На определение данных уходит несколько минут, но вычисление позиции и высоты занимает больше времени. Чаще всего, плотность осадочных пород возрастает с глубиной, потому что давление повышается и теряется пористость. Когда подъемники переносят скалы ближе к поверхности, то формируют аномальные тяжести. Отрицательные аномалии вызывают и полезные ископаемые, поэтому понимание гравитации может указать на источник нефти, а также на расположение пещер и прочих подземных полостей.

    Методы сейсмической рефракции

    Научный метод исследования Земли основывается на вычислении временного интервала между началом волны и ее прибытием. Волна может создаться взрывом, упавшим весом, воздушным пузырьком и т.д. Для ее поиска используют геофон (суша) и гидрофон (вода).

    Сейсмическая энергия прибывает к детектору различными путями. Сначала, пока волна близка к источнику, она выбирает самые короткие дорожки, но с увеличением дистанции начинает вилять. Сквозь тело могут проходить две разновидности волн: Р (первичные) и S (вторичные). Первые выступают волнами сжатия и перемещаются на максимальном ускорении. Вторые – сдвиговые, движущиеся с небольшой скоростью и не способны пройти сквозь жидкости.

    Вершины колумбийского массива Санта-Марта. Наивысший (5700 м) именуется в честь Христофора Колумба. Он настолько высокий, что удерживает небольшую, но стабильную ледяную шапку (сверху слева). Расположен на 10 градусов севернее экваториальной линии. Массивы обладают настолько большими высотами, что там не могут расти деревья и пейзаж кажется серым. Лишь трава и кустарники выдерживают низкие температуры.

    Главная разновидность поверхностного типа – волны Рэлея, где частичка перемещается по эллиптическому пути в вертикальной плоскости от источника. Горизонтальная часть выступает главной причиной землетрясений.

    Большая часть информации о земной структуре основывается на анализе землетрясений, так как они генерируют сразу несколько волновых режимов. Все они отличаются по компонентам движения и направлению. В инженерных исследованиях задействуют мелкую сейсмическую рефракцию. Иногда достаточно простого удара кувалдой. Также их применяют для обнаружения неисправностей.

    Электрические и ЭМ-методы

    При поиске полезных ископаемых методы зависят от электрохимической активности, изменения удельного сопротивления и эффектов диэлектрической проницаемости. Сам потенциал основывается на окислении верхней поверхности металлических сульфидных минералов.

    Великолепная дельта и зеленые болота реки Параны (слева), расположенной на атлантическом побережье Аргентины. Стоит на втором месте по величине среди южноамериканских рек, уступая первенство Амазонке. В широкое устье, именуемое Речной плитой (в центре справа), поступает коричневая мутная вода. Серая масса в Буэнос-Айресе не так сильно заметна на такой высоте (вверху слева), но астронавты учатся более точно отображать подобные городские особенности.

    Резистивность использует передачу тока от генератора к другому источнику и определяет разность потенциалов. Удельное сопротивление породы зависит от пористости, солености и прочих факторов. Скалы с глиной наделены низким удельным сопротивлением. Этим методом можно изучать подводные воды.

    Зондирование точно вычисляет, как удельное сопротивление меняется с глубиной. Токи с диапазоном в 500-5000 Гц проникают глубоко. Частота помогает определить уровень глубины. Естественные токи индуцируются из-за возмущений в атмосфере или атаке верхнего слоя солнечным ветром. Они охватывают широкий диапазон, поэтому позволяют исследовать различные глубины эффективнее.

    Но электрические методы не способны проникнуть слишком глубоко, поэтому не дают полноценных сведений о нижних слоях. Но с их помощью можно изучить металлические руды.

    Радиоактивные методы

    Территория Гималаев возле границы с Китаем и Индией. Пики отбрасывают длинные вечерние тени на снегу. Миллионы лет вода уничтожала горную скалу и оставляла осадок. Снежный покров отображает удивительную поверхностную гладкость, а сеть оврагов прорезает местность извилистыми тенями. Крупнейшая река делит каньон с глубиной в 500 м (справа).

    Этим способом можно выявить руды или горные породы. Наиболее естественная радиоактивность поступает от урана, тория и радиоизотопа калия. Сцинтиллометр помогает обнаружить гамма-лучи. Главный эмиттер – калий-40. Иногда скалу специально облучают, чтобы измерить воздействие и ответную реакцию.

    Геотермические методы

    Вычисление температурного градиента приводит к определению аномалии теплового потока. Земля наполнена различными жидкостями, химический состав и перемещение которых определяются чувствительными детекторами. Элементы трассировки иногда связаны с углеводородами. Геохимические карты помогают отыскать промышленные отходы и загрязненные участки.

    Раскопки и выборка

    Боливийские Анды выделяются уникальным и ярким явлением – Лагуна-Колорадо. При отсутствии атмосферной дымки удалось зафиксировать озеро, расположенное на высоте 4300 м над уровнем моря, что повышает уровень яркости. Отчетливый красно-коричневый окрас 10-километрового озера создается водорослями, живущими в соленых водах. Но иногда есть и зеленые участки, потому что водоросли отличаются по цвету и могут располагаться по уровню солености и температурному показателю.

    Чтобы идентифицировать различные виды топлива, нужно добыть образец. Многие скважины создаются вращательным способ, где жидкость циркулирует через долото для смазки и охлаждение. Иногда используют перкуссию, где тяжелое сверло опускают и поднимают, чтобы срезать куски скал.

    Выводы о земных глубинах

    О форме узнали в 1742-1743 гг., а среднюю плотность и массу вычислил Генри Кавендиш в 1797 году. Позже выяснили, что плотность горных пород на поверхности ниже показателя средней плотности, а значит данные внутри планеты должны быть выше.

    В конце 1500-х гг. Уильям Гилберт изучил магнитное поле. С того момента узнали о дипольном характере и перемене геомагнитного поля. Волны землетрясений наблюдали в 1900-х гг. Черта между корой и мантией характеризуется крупным ростом скорости на разрыве Мохоровича с глубиной в 24-40 км. Граница мантии и ядра – разрыв Гутенберга (глубина – 2800 км). Внешнее ядро жидкое, потому что не пропускает поперечные волны.

    Небольшой островок с огромной концентрацией зон вокруг. Это темный центральный участок, представленный серией пляжных хребтов, созданных песками, которые вынесло с берега штормами. Наивысшая точка поднимается на 12 футов над уровнем моря. Маяк с солнечной батареей кажется крошечной белой точкой (стрелка). Здесь размножаются различные редкие птицы, среди которых фрегаты.

    В 1950-х гг. случилась революция в понимании нашей планеты. Теории континентального дрейфа перешли в тектонику плит, то есть литосфера плавает на астеносфере. Пластины смещаются и формируется новая океаническая кора. Также литосферы могут сближаться, удаляться и врезаться. Многие землетрясения возникают на местах субдукции.

    Об океанической коре узнали благодаря серии буровых скважин. В рифтовых участках материал из мантийных колодцев охлаждается и затвердевает. Постепенно осадки накапливаются и создается базальтовый фундамент. Кора тонкая (5-8 км в толщину) и практически вся молодая (меньше 200 000 000 лет). Но реликты достигают возраста в 3.8 млрд. лет.

    Для побережья Индийского океана прибережные лагуны с округленными островами – типичное явление. Подобные формы выделяются на фоне белых угловых прудов соледобывающей промышленности. Бурые воды (справа и внизу слева) постоянно пополняются дождями, но дамбы не дают темной воде смешаться с более прозрачной.

    Континентальная кора намного старше и формировалась сложнее, поэтому ее тяжелее изучать. В 1975 году команда ученых использовала сейсмические методы, чтобы найти залежи нефти. В итоге им удалось обнаружить несколько низкоугловых тяговых листов под горами Аппалачи. Это сильно отразилось на теории формирования континентов.

    После Второй мировой войны энтузиасты со всего мира пытались найти места ядерных взрывов. Это помогло провести огромное количество измерений землетрясений и стало главным источником для определения земной структуры.

    Современные исследования планетарных глубин строятся на вычислении поперечных волн. Сейсмический томографический анализ фиксирует отличия в скорости земной поверхности и помогает найти мантийные струи. Ниже представлены знаменательные даты изучения планеты Земля и космические аппараты, которые использовали для этих целей.

    Источник

    Читайте также:  Космос нефть газ контакты
    Adblock
    detector