Источник энергии Солнца
Для поддержания наблюдаемой светимости Солнца в течение длительного времени необходимы достаточные запасы его внутренней энергии и процессы, перерабатывающие эту энергию в излучение. На первый взгляд, энергия, выделяемая одним килограммом солнечного вещества в секунду, равная:
— величина небольшая, она примерно равна количеству теплоты, выделяемому одним килограммом гниющих листьев. Но химической энергии, запасенной в листьях, при таком энерговыделении едва хватает на год. Солнце, по современным данным, существует около 5 млрд, лет, причем его светимость за это время существенно не изменилась, следовательно, запасов внутренней энергии солнечного вещества должно хватить еще на миллиарды лет.
Зная светимость Солнца T= 4* 10 26 Вт и продолжительность его жизни t=5*10 9 лет = 1,5-10 17 секунд, легко найти энергию, выделенную Солнцем за этот промежуток времени: 4*10 26 Вт * 1,5-10 17 с = 6*10 43 Дж. Поделив эту энергию на массу Солнца, получим, что за это время жизни Солнца каждый килограмм его вещества выделил 3*10 13 Дж энергии.
Удельная теплота сгорания самого калорийного химического горючего — бензина — равна 4,6*10 7 Дж/кг, что значительно меньше внутренней энергии, выделяемой 1 кг солнечного вещества. Поэтому идея о свечении Солнца за счет химических реакций, высказанная в середине XIX в., была несостоятельной. Если бы это было так, то запасов энергии хватило бы только на 800 лет.
Примерно в то же время известный немецкий физик Г. Гельмгольц (1821 —1894 гг.) выдвинул гипотезу, которой пытался объяснить энерговыделение Солнца за счет его гравитационного сжатия; сжатие приводит к выделению тепла и к уменьшению запасов потенциальной энергии солнечного вещества. Однако простые подсчеты показывают, что при современной светимости Солнца запасов его потенциальной энергии хватило бы всего на несколько миллионов лет.
Единственным приемлемым источником энергии, поддерживающим излучение Солнца, может служить термоядерная энергия, выделяемая при образовании (синтезе) ядер атомов гелия, из ядер водорода.
Для протекания ядерных реакций необходима температура в несколько миллионов кельвинов, при которой участвующие в реакции частицы с одинаковым электрическим зарядом смогли бы получить достаточную энергию для взаимного сближения, преодоления электрических сил отталкивания и слияния в одно новое ядро. Ядерные реакции, протекающие при высоких температурах, получили название термоядерных реакций. Именно такие реакции протекают в недрах Солнца.
Расчеты показывают, что в результате термоядерных реакций синтеза из водорода массой 1 кг образуется гелий массой 0,99 кг и выделяется около 9*10 14 Дж энергии. Если сравнить эту величину с энергией (3*10 13 Дж), которую Солнце уже выделило каждым килограммом водорода за 5 млрд, лет своей жизни, то оставшегося в нем водорода должно было бы хватить почти на 150 млрд. лет. Но так как реакции синтеза протекают только в ядре Солнца, содержащем примерно десятую долю всей его массы, то запасов ядерного горючего хватит еще на 10 млрд. лет.
Источник
Строение и атмосфера Солнца. Солнечный ветер
Из чего состоит Солнце, почему мы не видим солнечную корону и что такое солнечный ветер
Солнце языком цифр
Солнце, несмотря на то, что числится по классификации звезд “желтым карликом” так велико, что нам даже сложно представить. Когда мы говорим, что масса Юпитера – это 318 масс Земли, это кажется невероятным. Но когда мы узнаем, что 99,8% массы всего вещества Солнечной системы приходится на Солнце – это просто выходит за рамки понимания.
За прошедшие годы мы немало узнали о том как устроена “наша” звезда. Хотя человечество не изобрело (и вряд ли когда-то изобретет) исследовательский зонд, способный физически приблизиться к Солнцу и взять пробы его вещества, мы итак неплохо осведомлены об его составе.
Сравнение размеров Солнца с размерами планет Солнечной системы
Знание физики и возможности спектрального анализа дают нам возможность точно сказать, из чего состоит Солнце: 70% от его массы составляет водород, 27% – гелий, другие элементы (углерод, кислород, азот, железо, магний и другие) – 2,5%.
Однако, только этой сухой статистикой наши знания, к счастью, не ограничиваются.
Что находится внутри Солнца
Согласно современным расчетам температура в недрах Солнца достигает 15 – 20 миллионам градусов Цельсия, плотность вещества звезды достигает 1,5 грамма на кубический сантиметр.
Источник энергии Солнца – постоянно идущая ядерная реакция, протекающая глубоко под поверхностью, благодаря которой и поддерживается высокая температуру светила. Глубоко под поверхностью Солнца водород превращается в гелий в следствии ядерной реакции с сопутствующим выделением энергии.
“Зона ядерного синтеза” Солнца называется солнечным ядром и имеет радиус примерно 150—175 тыс. км (до 25 % радиуса Солнца). Плотность вещества в солнечном ядре в 150 раз превышает плотность воды и почти в 7 раз – плотность самого плотного вещества на Земле: осмия.
Ученым известны два вида термоядерных реакций протекающих внутри звезд: водородный цикл и углеродный цикл. На Солнце преимущественно протекает водородный цикл, который можно разбить на три этапа:
- ядра водорода превращаются в ядра дейтерия (изотоп водорода)
- ядра водорода превращаются в ядра неустойчивого изотопа гелия
- продукты первой и второй реакции связываются с образованием устойчивого изотопа гелия (Гелий-4).
Каждую секунду в излучение превращаются 4,26 миллиона тонн вещества звезды, однако по сравнению с весом Солнца, даже это невероятное значение так мало, что им можно пренебречь.
Внутреннее строение недр Солнца: ядро, зона конвекции, фото и хромосфера, солнечная корона
Выход тепла из недр Солнца совершается путем поглощения электромагнитного излучения, приходящего снизу и его дальнейшего переизлучения.
Ближе к поверхности солнца излучаемая из недр энергия переносится преимущественно в зоне конвекции Солнца с помощью процесса конвекции – перемешивании вещества (теплые потоки вещества поднимаются ближе к поверхности, холодные же опускаются).
Зона конвекции залегает на глубине около 10% солнечного диаметра и доходит почти до поверхности звезды.
Атмосфера Солнца
Выше зоны конвекции начинается атмосфера Солнца, в ней перенос энергии снова происходит с помощью излучения.
Фотосферой называют нижний слой солнечной атмосферы – видимую поверхность Солнца. Её толщина соответствует оптической толщине приблизительно в 2/3 единицы, а в абсолютных величинах фотосфера достигает толщины 100-400 км. Именно фотосфера является источником видимого излучения Солнца, температура составляет от 6600 К (в начале) до 4400 К (у верхнего края фотосферы).
На самом деле Солнце выглядит как идеальный круг с четкими границами только потому, что на границе фотосферы его яркость падает в 100 раз за менее чем одну секунду дуги. За счет этого края Солнечного диска заметно менее ярки нежели центр, их яркость всего 20% от яркости центра диска.
Хромосфера – второй атмосферный слой Солнца, внешняя оболочка звезды, толщиной около 2000 км, окружающая фотосферу. Температура хромосферы увеличивается с высотой от 4000 до 20 000 К. Наблюдая Солнце с Земли, мы не видим хромосферу из-за малой плотности. Её можно наблюдать только во время солнечных затмений – интенсивное красное свечение вокруг краев солнечного диска, это и есть хромосфера звезды.
Солнечная корона – последняя внешняя оболочка солнечной атмосферы. Корона состоит из протуберанцев и энергетических извержений, исходящих и извергающихся на несколько сотен тысяч и даже более миллиона километров в пространство, образуя солнечный ветер. Средняя корональная температура составляет до 2 млн К, но может доходить и до 20 млн К. Однако, как и в случае с хромосферой – с земли солнечная корона видна только во время затмений. Слишком малая плотность вещества солнечной короны не позволяет наблюдать её в обычных условиях.
Солнечная корона во всей красе видна только по время солнечных затмений
Солнечный ветер
Солнечный ветер – поток заряженных частиц (протонов и электронов), испускаемых нагретыми внешними слоями атмосферы звезды, который простирается до границ нашей планетарной системы. Светило ежесекундно теряет миллионы тонн своей массы, из-за этого явления.
Около орбиты планеты Земля скорость частиц солнечного ветра достигает 400 километров в секунду (они перемещаются по нашей звездной системе со сверхзвуковой скоростью), а плотность солнечного ветра от нескольких до нескольких десятков ионизированных частиц в кубическом сантиметре.
Именно солнечный ветер нещадно “треплет” атмосферу планет, “выдувая” содержащиеся в ней газы в открытый космос, он же во многом ответственен за “хвосты” комет. Противостоять солнечному ветру Земле позволяет магнитное поле планеты, которое служит невидимой защитой от солнечного ветра и препятствует оттоку атомов атмосферы в открытый космос. При столкновении Солнечного ветра с магнитным полем планеты происходит оптическое явление, которое на Земле мы называем – полярное сияние, сопровождаемое магнитными бурями.
Впрочем, неоспорима и польза солнечного ветра – именно он “сдувает” из Солнечной системы и космическую радиацию галактического происхождения – а следовательно оберегает нашу звездную систему от внешних, галактических излучений.
Глядя на красоту полярных сияний, трудно поверить, что эти всполохи – видимый признак солнечного ветра и магнитосферы Земли
Источник
Как рождается энергия Солнца?
Есть одна причина, по которой Земля является единственным местом в Солнечной системе, где существует и процветает жизнь. Конечно, ученые подозревают, что под ледяной поверхностью Европы или Энцелада может тоже существовать микробная или даже водная форма жизни, также ее могут найти и в метановых озерах Титана. Но до поры до времени Земля остается единственным местом, которое обладает всеми необходимыми условиями для существования жизни.
Одна из причин этому заключается в том, что Земля расположена в потенциально обитаемой зоне вокруг Солнца (так называемой «зоне Златовласки»). Это означает, что она находится в нужном месте (не слишком далеко и не слишком близко), чтобы получать обильную энергию Солнца, в которую входит свет и тепло, необходимые для протекания химических реакций. Но как именно Солнце обеспечивает нас энергией? Какие этапы проходит энергия на пути к нам, на планету Земля?
Ответ начинается с того, что Солнце, как и все звезды, может вырабатывать энергию, поскольку является, по сути, массивным термоядерным реактором. Ученые считают, что оно началось с огромного облака газа и частиц (т. е. туманности), которое коллапсировало под силой собственной тяжести — это так называемая теория туманности. В этом процессе родился не только большой шар света в центре нашей Солнечной системы, но и водород, собранный в этом центре, начал синтезироваться с образованием солнечной энергии.
Технически известный как ядерный синтез, этот процесс высвобождает огромное количество энергии в виде тепла и света. Но на пути из центра Солнца к планете Земля эта энергия проходит через ряд важных этапов. В конце концов, все сводится к слоям Солнца, и роль каждого из них играет важную роль в процессе обеспечения нашей планеты важнейшей для жизни энергией.
Ядро Солнца — это область, которая простирается от центра до 20-25% радиуса светила. Именно здесь, в ядре, производится энергия, порождаемая преобразованием атомов водорода (H) в молекулы гелия (He). Это возможно благодаря огромному давлению и высокой температуре, присущим ядру, которые, по оценкам, эквивалентны 250 миллиардам атмосфер (25,33 триллиона кПа) и 15,7 миллионам градусов по Цельсию, соответственно.
Конечным результатом является слияние четырех протонов (молекул водорода) в одну альфа-частицу — два протона и два нейтрона, связанных между собой в частицу, идентичной ядру гелия. В этом процессе высвобождается два позитрона, а также два нейтрино (что меняет два протона на нейтроны) и энергия.
Ядро — единственная часть Солнца, которая производит значительное количество тепла в процессе синтеза. По сути, 99% энергии, произведенной Солнцем, содержится в пределах 24% радиуса Солнца. К 30% радиуса синтез почти целиком прекращается. Остаток Солнца подогревается энергией, которая передается из ядра через последовательные слои, в конечном счете достигая солнечной фотосферы и утекая в космос в виде солнечного света или кинетической энергии частиц.
Солнце высвобождает энергию, преобразуя массу в энергию со скоростью 4,26 миллиона метрических тонн в секунду, что эквивалентно 38,460 септиллионам ватт в секунду. Чтобы вам было понятнее, это эквивалентно взрывам 1 820 000 000 «царь-бомб» — самой мощной термоядерной бомбы в истории человечества.
Зона лучистого переноса
Эта зона находится сразу после ядра и простирается на 0,7 солнечного радиуса. В этом слое нет тепловой конвекции, но солнечная материя очень горячая и достаточно плотная, чтобы тепловое излучение запросто передавало интенсивное тепло из ядра наружу. В основном она включает ионы водорода и гелия, испускающие фотоны, которые проходят короткое расстояние и поглощаются другими ионами.
Конвективная зона
Это внешний слой Солнца, на долю которого приходится все, что выходит за рамки 70% внутреннего радиуса Солнца (и уходит примерно на 200 000 километров ниже поверхности). Здесь температура ниже, чем в радиационной зоне, и тяжелые атомы не полностью ионизированы. В результате радиационный перенос тепла проходит менее эффективно, и плотность плазмы достаточно низка, чтобы позволить появляться конвективным потокам.
Из-за этого поднимающиеся тепловые ячейки переносят большую часть тепла наружу к фотосфере Солнца. После тог, как эти ячейки поднимаются чуть ниже фотосферической поверхности, их материал охлаждается, а плотность увеличивается. Это приводит к тому, что они опускаются к основанию конвективной зоны снова — где забирают еще тепло и продолжают конвективный цикл.
На поверхности Солнца температура падает до примерно 5700 градусов по Цельсию. Турбулентная конвекция этого слоя Солнца также вызывает эффект, который вырабатывает магнитные северный и южный полюса по всей поверхности Солнца.
Именно в этом слое также появляются солнечные пятна, которые кажутся темными по сравнению с окружающей область. Эти пятна соответствуют концентрациям потоков магнитного поля, которые осуществляют конвекцию и приводят к падению температуры на поверхности по сравнению с окружающим материалом.
Фотосфера
Наконец, есть фотосфера, видимая поверхность Солнца. Именно здесь солнечный свет и тепло, излученные и поднятые на поверхность, распространяются в космос. Температуры в этом слое варьируются между 4500 и 6000 градусами. Поскольку верхняя часть фотосферы холоднее нижней, Солнце кажется ярче в центре и темнее по бокам: это явление известно как затемнение лимба.
Энергия, испускаемая фотосферой, распространяется в космосе и достигает атмосферы Земли и других планет Солнечной системы. Здесь, на Земле, верхний слой атмосферы (озоновый слой) фильтрует большую часть ультрафиолетового излучения Солнца, но пропускает часть на поверхность. Затем эта энергия поглощается воздухом и земной корой, согревает нашу планету и обеспечивает организмы источником энергии.
Солнце находится в центре биологических и химических процессов на Земле. Без него жизненный цикл растений и животных закончился бы, циркадные ритмы всех земных существ были бы сорваны, и жизнь на Земле перестала бы существовать. Важность Солнца была признана еще в доисторические времена, и многие культуры рассматривали его как божество (и зачастую помещали его в качестве главного божества в свои пантеоны).
Однако только в последние несколько столетий мы начали понимать процессы, которые питают Солнце. Благодаря постоянным исследованиям физиков, астрономов и биологов, мы теперь можем понять, как Солнце производит энергию и как она проходит через нашу Солнечную систему. Изучение известной Вселенной с ее разнообразием звездных систем и экзопланет также помогает нам провести аналогию с другими типами звезд.
Источник