Экран размером в тысячи километров
Астрономы по праву гордятся тем, что в их руках находятся самые крупные (и очень дорогие!) научные приборы — оптические телескопы диаметром 10 м, радиотелескопы диаметром в сотни метров, межконтинентальные радиоинтерферометры с базой, длина которой равна расстоянию от Крыма до Австралии! Кажется, не было крупнее астрономических приборов в истории человечества. Но это не так. Еще древние астрономы использовали для наблюдения солнечной короны «прибор» размером почти 3500 км. Речь идет, конечно, о Луне, которая во время полных солнечных затмений аккуратно закрывает сияющий диск нашей звезды, предоставляя ученым возможность исследовать солнечную хромосферу и корону. Особенно ценно то, что диск Луны имеет тот же угловой размер, что и фотосферный диск Солнца. Луна как будто специально изготовлена для помощи астрономам в изучении Солнца. Сколько сил и изобретательности было затрачено на создание внезатменного коронографа! Прибор работает, но пока ему трудно конкурировать с естественным коронографом — Луной, и астрономы по-прежнему с нетерпением ждут солнечных затмений. До сих пор с поверхности Земли благодаря Луне удается получать изумительные снимки солнечной короны (рис. 5.1), превосходящие по качеству даже те, которые получены дорогостоящими космическими обсерваториями (см. рис. 4.24).
Рис. 5.1. Солнечная корона, наблюдавшаяся с территории Монголии во время затмения 1 августа 2008 г. Изображение создано путем объединения 55 кадров, снятых с разными экспозициями: от 1/125 до 8 секунд. Солнце и Луна располагаются на фоне созвездия Рак. Фото: M. Druckmüller, P. Aniol, V. Rušin.
Неоценимы в астрономических исследованиях покрытия Луной различных объектов малого углового размера. Астрономы умеют очень точно измерять яркость тусклых источников света — астероидов, звезд, галактик, но земная атмосфера препятствует исследованию тонкой структуры этих источников. Край лунного диска, последовательно закрывая от наблюдателя (или открывая) части изучаемого объекта, позволяет измерить распределение яркости по поверхности объекта, то есть получить его изображение. Луна движется по орбите со скоростью около 1 км/с. Для наблюдателя на Земле край лунного диска на фоне неба движется с угловой скоростью от 0,3″ до 0,5″ в секунду, в зависимости от географической широты наблюдателя и высоты Луны над горизонтом. Современный телескоп с электронным приемником света способен тысячи раз в секунду фиксировать световой поток от объекта 5 m . Значит, угловое разрешение системы «телескоп — Луна» составляет примерно 0,001″, то есть в сотни раз лучше, чем у телескопа «без Луны», и даже лучше, чем у телескопа с дорогостоящей системой адаптивной оптики.
Рис. 5.2. Момент контакта во время покрытия Венеры диском Луны. Фото: Philippe Tosi.
Методом лунных покрытий определяют диаметры астероидов, планет и звезд, открывают и исследуют тесные двойные звезды и даже изучают распределение яркости на дисках некоторых звезд. Сейчас этот метод очень популярен и доступен даже любителям астрономии 3 . Правда, такие наблюдения возможны лишь в тех местах на небе, где бывает Луна: для земного наблюдателя — в полосе шириной около 12° вдоль эклиптики.
У метода лунных покрытий есть и недостатки. Во-первых, дифракция света на краю лунного диска приводит к искривлению световых лучей. Даже точечный источник, когда на него надвигается лунный диск, исчезает не сразу, а предварительно испытав несколько возрастающих по амплитуде колебаний яркости. Исключают эти эффекты математическими методами, сравнивая с наблюдаемой картиной изменения яркости кривые, рассчитанные для источников различного углового диаметра.
Второй недостаток данного метода в том, что одно лунное покрытие — это всего лишь один «скан», дающий одномерное распределение яркости источника. Но если наблюдать несколько покрытий одного и того же источника, то можно получить набор одномерных профилей яркости с разными углами сканирования. Дело в том, что Луна
движется очень сложно и никогда не повторяет в точности своего пути. По этому набору сканов несложно восстановить двумерную картину распределения яркости.
Покрытия Луной используются для исследований не только в оптическом диапазоне: чрезвычайно широкое применение в свое время нашел этот метод в рентгеновской астрономии, приборы которой поначалу обладали очень низким угловым разрешением. В 1963 г. рентгеновские детекторы имели угловое разрешение несколько градусов, поэтому московский астрофизик И.С. Шкловский предложил исследовать рентгеновский источник в созвездии Телец в то время, когда его постепенно закрывала Луна. Эксперимент был проведен: в результате источник отождествили с Крабовидной туманностью и определили его размер — около 1′, что было в сотни раз меньше разрешающей способности рентгеновского детектора.
Особенно тесно рентгеновские источники расположены на небе в направлении галактического центра. К счастью, через этот район время от времени проходит Луна. В 1971 г. в ходе ракетного эксперимента удалось определить координаты близкого к галактическому центру рентгеновского источника GX3+1 с точностью 25″×1″. Рентгеновским телескопам такая точность стала доступна лишь в конце 1970-х гг.
А еще раньше, в 1950-е гг., аналогичная ситуация сложилась в радиоастрономии. В то время радиотелескопы в метровом диапазоне имели угловое разрешение около 10°. Поэтому радиоастрономы часто использовали методы лунных покрытий для определения точных координат источников. В наше время на радиоинтерферометрах достигнута фантастическая разрешающая способность — 0,0001″, но Луна по-прежнему остается в арсенале радиоастрономов. Например, в последние годы при наблюдении радиоизлучения межзвездных молекул метод лунных покрытий позволил детально исследовать ядро нашей Галактики.
Рис. 5.3. Кривые блеска звезды IRC+00233 на длинах волн 2 и 4 микрона в момент ее покрытия Луной. Крестики — данные наблюдений. Сплошная кривая — теоретическая модель для звезды углового размера 0,0045″. Колебания блеска вызваны эффектом дифракции света на краю лунного диска: чем меньше угловой размер звезды, тем сильнее дифракционные колебания блеска. Из работы P.M. Harvey, A. Oldag (Техасский университет), 2007 г.
Начиная с 1973 г. Луна стала выступать в новой роли: американский радиоастрономический спутник «Эксплорер-49», выйдя на окололунную орбиту, развернул 230-метровые антенны и приступил к исследованию низкочастотного радиоизлучения Солнца, Юпитера и других объектов, закрываясь с помощью Луны от радиошумов земного происхождения. Заметим, что при наблюдении с борта искусственных спутников Земли и Луны метод лунных покрытий удается распространить практически на все небо. Первый опыт работы в радиотени Луны оказался удачным, и теперь радиоастрономы готовятся к созданию постоянной обсерватории на обратной стороне Луны. Впрочем, я опасаюсь, что пока эта обсерватория будет создана, наши музыкальные радиостанции доберутся и до обратной стороны Луны.
Итак, Луна отлично исполняет роль заслонки. А на что еще она годится? В следующем разделе мы узнаем, что Луна — подходящая мишень для нейтрино; вполне вероятно, что скоро она будет использована в этом амплуа. А недавно у нее появилась еще одна роль: Луну можно использовать как зеркало. Мы не имеем в виду любительскую радиосвязь «через Луну», когда принимаются отраженные от нее радиоволны: это интересно, но не имеет отношения к планетам. Астрономы стали использовать Луну в роли зеркала следующим образом: во время лунных затмений на поверхность Луны попадает солнечный свет, прошедший сквозь земную атмосферу, затем он частично отражается от Луны, и астрономы на Земле могут его наблюдать. Яркость Луны во время затмения показывает, насколько прозрачна атмосфера Земли, велика ли в ней облачность; цвет лунной поверхности говорит о степени запыленности нашей атмосферы.
А совсем недавно лунное затмение позволило взглянуть на Землю как на экзопланету. Испанские астрофизики (E. Palle и др.) опубликовали результаты любопытной работы, которые увеличивают шанс успешного поиска внесолнечных планет с органической жизнью. Наблюдая частное лунное затмение 16 августа 2008 г., они получили спектр солнечного излучения, прошедший через атмосферу Земли и отраженный от Луны. В нем без особого труда обнаружились линии молекулярного кислорода, озона, водяного пара, метана и углекислого газа. Эти биомаркеры в своей совокупности однозначно свидетельствуют о наличии жизни на Земле. Такие же наблюдения за экзопланетами можно проводить в период их прохождения на фоне их звезды.
Рис. 5.4. Частное лунное затмение 16 августа 2008 г. Вверху слева: схема прохождения Луны через полутень и тень Земли. Указано всемирное время (UT). Справа: фото Луны в максимальной фазе затмения (21:10 UT). Внизу: схема (не в масштабе) прохождения солнечных лучей сквозь атмосферу Земли к Луне и отражения обратно к Земле.
Источник
История и будущее телескопов на Луне
Десятилетняя идея лунного ученого Ричарда Вондрака, работавшего в научном операционном центре Аполлона во время программы посадки на Луну, предлагала использовать лунные кратеры для создания радиотелескопов, таких как обсерватория Аресибо в Пуэрто-Рико. Здесь концепция показывает, как три телескопа можно использовать отдельно или в сочетании для создания одного гигантского инструмента (фото: любезно предоставлено NASA).
Для радиоастрономов Земля – шумное место. Многие современные электронные устройства пропускают радиосигналы, которые сталкиваются с длинными слабыми световыми волнами, изучаемыми радиообсерваториями. И на протяжении десятилетий это невидимое световое загрязнение толкало радиообсерватории все глубже в так называемые «зоны радиомолчания». И из-за этого радиоастрономы стали находиться далеко от других людей, в таких местах, как пустыня Атакама в Чили.
Но не только созданные человеком устройства мешают слабым радиосигналам. Могут вмешиваться и природные явления Земли и Солнца. Ионосфера Земли – где солнечное излучение ионизирует молекулы в нашей верхней атмосфере – полностью блокирует самые длинные радиоволны до достижения поверхности нашей планеты.
Ученые положили глаз на дальнюю сторону луны. Поскольку радиотелескоп, расположенный на дальнем конце Луны, всегда обращен от Земли, он будет почти полностью защищен от радиопомех, генерируемых Землей. Там астрономы изучат ряд явлений, которые невозможно увидеть с нашей планеты или даже с помощью космических телескопов, вращающихся вокруг Земли. Телескоп на Луне может показать нам, что произошло до того, как Вселенная сформировала свои первые звезды и галактики, или позволит нам увидеть электромагнитные поля вокруг далеких экзопланет, обнаружив чрезвычайно тонкие, но фундаментально важные свойства, касающиеся истинного потенциала данного мира для жизни.
«На другом конце луны у вас радио-тихая обстановка, позволяющая проводить очень чувствительные измерения, которых вы просто не можете получить никаким другим способом», – говорит Стив Сквайрс, главный ученый в космической компании Blue Origin. Он добавляет, что эта среда очень и очень способствует прогрессу науки.
Телескоп на «Аполлоне-16»
«Аполлон-16» был оснащен позолоченным ультрафиолетовым телескопом, с которым астронавты делали 178 снимков космоса. На фотографии – Джордж Каррутерс (справа) и Уильям Конуэй, руководитель проекта военно-морского исследовательского института, осматривают то, что вскоре станет первой обсерваторией на базе Луны. Фото: военно-морская исследовательская лаборатория США)
Первый телескоп на Луне не был радиотелескопом, но он все еще мог показать нам космос, невидимый с поверхности Земли.
Инструмент, названный дальней ультрафиолетовой камерой/спектрографом, был разработан Джорджем Каррутерсом, молодым исследователем из военно-морской исследовательской лаборатории, который уже был на пути к новаторским наблюдениям в ультрафиолетовом спектре. Ультрафиолетовый свет в значительной степени фильтруется атмосферой Земли, поэтому, как и многие части радиоспектра, его необходимо изучать из космоса. И после того, как 20 июля 1969 года «Аполлон-11» успешно приземлился на лунной поверхности, NASA обратились к академическому сообществу с призывом проведения научных экспериментов, которые могут быть выполнены в будущих лунных миссиях.
Каррутерс предложил ультрафиолетовый телескоп. А к апрелю 1972 года он уже летел на Луну на борту «Аполлона-16». Астронавты использовали позолоченный инструмент, чтобы сделать 178 изображений космоса, запечатлеть далекие звездные облака, туманности и даже снимки внешней атмосферы Земли. Но в то время как проверенный на практике ультрафиолетовый прицел достиг своих скромных целей, потребуется еще 41 год, чтобы отправить еще один такой телескоп на Луну.
Лунные телескопы Китая
В 2019 году китайский космический корабль «Шэньчжоу-4» стал первым, кто мягко приземлился на дальнем конце луны. Фотография была получена луноходом «Юйту-2», который приземлился вместе с космическим кораблем. Фото: CNSA
После длительного перерыва, Национальное космическое управление Китая в 2013 году наконец вернуло телескопы на Луну. Но в этот раз никаких космонавтов не потребовалось. Это первый в мире лунный телескоп с дистанционным управлением был дополнительным прибором, который полетел на корабле «Шэньчжоу-3».
Лунный ультрафиолетовый телескоп, диаметр которого составляет всего 6 дюймов, все еще далек от тех инструментов, которые астрономы давно мечтают отправить на Луну. Но даже при таких размерах наблюдаемые им длины волн могут предложить уникальную информацию о космосе без вмешательства Земли.
Китайские ученые использовали лунный ультрафиолетовый телескоп для сбора данных за тысячу часов, отслеживания звезд и даже галактик. И, что еще важнее, стабильная работа телескопа также послужила созданием новых технологий для будущих миссий.
В прошлом году китайское космическое агентство также отправили небольшой радиотелескоп на Луну. В начале января 2019 года, так называемый низкочастотный радиоспектрометр, приземлился на дальней стороне Луны с помощью корабля «Шэньчжоу-4».
С тех пор китайские ученые использовали телескоп для проведения первоначальных исследований Вселенной, используя ранее неисследованные радиоволны. Однако из-за скромных способностей инструмента их наблюдения ограничены относительно близким космосом.
Идеи для будущих лунных телескопов
Надежды астрономов на лунные научные обсерватории обычно связаны с будущими лунными базами, которые остаются только пока задуманными. Фото: NASA
Захват ранее недоступных видов радиоволн был мечтой астрономов на протяжении десятилетий. Около 40 лет назад астрономы начали всерьез строить графики того, что можно разработать различные типы лунных телескопов и как их построить.
Даже тогда, согласно документу «Будущие астрономические обсерватории на Луне» от NASA, ученые поняли, что Луна предлагает уникальную точку обзора, которая может открыть «последнее окно в электромагнитном спектре на очень низких частотах».
К началу 1980-х десятилетние миссии «Аполлона» были позади, а расцветающая программа «Спейс шаттл» выглядела как успех. Это привело к возобновлению разговоров о возвращении на Луну. Исследователи надеялись, что эти события могут привести к созданию лунных баз, которые позволят создать инфраструктуру для устойчивых научных исследований.
«Единственный способ оставить научные приборы на Луне – это космонавты», – говорит астроном из Колорадского университета в Боулдере Джек О. Бернс. Он является директором финансируемой NASA-cети по исследованию космического пространства и в течение десятилетий был ведущим крестоносцем по созданию телескопов на Луне.
Теперь впервые благодаря современной робототехнике и появлению частных космических компаний, Бернс считает, что эта безумная идея может стать реальностью. Его ученики теперь регулярно работают с роботами дистанционного управления и алгоритмами машинного обучения – вещами, которые были бы немыслимы в 1980-х годах. Он говорит, что технология нагнала, и, возможно, это то, что нам было нужно.
Благодаря этим технологическим достижениям и многим другим предложениям по лунному телескопу, больше не требуются экипажи астронавтов и космические программы на 100 миллиардов долларов. Вместо этого они могут быть построены с использованием планетоходов, отправленных на частных ракетах, которые уже разрабатываются.
Дальний телескоп
Дальний телескоп достигнет Луны с помощью посадочного аппарата компании Blue Moon Origins, и использует планетоходы для развертывания сети подключенных радиоантенн. Фото: NASA / JPL-Caltech / Джек О. Бернс, Университет Колорадо, Боулдер
Бернс и его коллеги недавно завершили финансируемое NASA исследование для развернутого радиотелескопа, который распространил бы 128 антенн в форме цветка около 6 миль в ширину. Они назвали свой проект «Дальний массив для исследований в области радиологии в темные века и экзопланет». Или, более кратко – FARSIDE (дальний телескоп).
FARSIDE будет изучать магнитные поля планет вокруг далеких звезд, помогая астрономам лучше понять, какие экзопланеты могут быть действительно обитаемыми. Телескоп также дал бы астрономам первый реальный шанс изучить ключевой период ранней космологической истории, названной «Темные века». В течение этой эпохи и звезды, и галактики еще не сформировались, поэтому мы не можем увидеть ни одного вещества, существовавшего в то время.
NASA также профинансировало еще одно предложенное исследование о создании радиотелескопа в стиле Аресибо внутри лунного кратера. Проектом руководит инженер лаборатории реактивного движения Саптарши Бандиопадхай. Он провел три года, изучая различные конструкции телескопа, а недавно получил финансирование от Института передовых концепций NASA для продолжения реализации проекта.
«И, хотя в последние десятилетия многочисленные предложения по лунному телескопу продвинулись дальше, чем любые другие, нам еще предстоит пройти долгий путь», — говорит Бандиопадхай.
Но Бернс настроен оптимистично. Сейчас он работает с космической компанией Джеффа Безоса (Blue Origin), которая построила лунный посадочный аппарат, способный посадить груз в 5 тонн на лунную поверхность. Этого более чем достаточно, чтобы перенести дальний телескоп FARSIDE. Все, что им нужно сейчас – это примерно 1 миллиард долларов, чтобы сделать это реальностью.
«Тридцать лет назад это было бы невозможно», – говорит Бернс, – «Сегодня это практически готовая технология».
Источник