Меню

Химия связанная с космосом

Химия связанная с космосом

Когда-то космос был синонимом бескрайней пустоты. Считалось, что там нет ничего, кроме разделённых огромными расстояниями звёзд. Неудивительно, что словосочетание «химия космоса» для многих звучит как «горячий снег», «живой труп» или «правдивая ложь». Однако химические процессы в ­космосе — это не оксюморон, атомы и молекулы можно найти не только в звёздах и планетах.

Эта статья была опубликована в журнале OYLA №10(38). Оформить подписку на печатную и онлайн-версию можно здесь.

Атомы и молекулы образуют газопылевые туманности, в самых плотных областях которых на один кубический сантиметр приходится тысяча атомов или молекул. И даже самые «пустые» участки космоса могут содержать десятки или единицы атомов или молекул, но уже на кубический метр. Для сравнения: один кубический метр воздуха при атмосферном давлении и температуре 25°С содержит порядка 2,5 × 10 19 молекул.

В межзвёздном пространстве протекают уникальные химические процессы: огромные расстояния между молекулами и атомами позволяют им поглощать электромагнитное излучение (свет) и накапливать большие запасы энергии. При столкновении с другими «накачанными энергией» молекулами они преодолевают энергетический барьер и реагируют с образованием неожиданных продуктов. Воспроизвести такие процессы в лаборатории практически невозможно: даже если мы создадим в колбе разрежение, аналогичное космическому, и облучим содержимое колбы электромагнитными волнами, молекулы не смогут накопить «космическую» энергию, так как будут сталкиваться со стенками и терять её.

Но всё же как-то исследовать эти процессы нужно. Учёных интересует, какие вещества и каким образом формируются в межзвёздном пространстве. Зафиксировать эти вещества и исследовать традиционными методами нельзя. Их приходится изучать на расстоянии, анализируя электромагнитное излучение, которое регистрируют телескопы. Каждый атом химического элемента или молекула при нагревании (поглощении энергии) начинает резонировать на определённой частоте. В результате чего излучается свет. Этот поток электромагнитного излучения мы детектируем в виде характерных линий, которые и называем спектром частицы.

Горячие юпитеры

Так называют планеты с массой примерно как у Юпитера. Однако, в отличие от последнего, они находятся на близком расстоянии от своей звезды, примерно в десять раз ближе, чем Меркурий от Солнца. Температура поверхности таких планет оценивается в тысячи градусов. Все известные горячие юпитеры — экзопланеты, то есть расположены вне Солнечной системы.

Расположение линий и их интенсивность уникальны для каждого атома. Линии позволяют понять, что это за вещество; выяснить, в какой форме оно существует (пылинки из сотен компонентов или отдельной молекулы); оценить, горячее оно или холодное. Методы спектроскопии позволили установить, что космос буквально заполнен молекулами, даже на значительном удалении от звёзд. Легче всего обнаружить малые молекулы. Наиболее часто встречаются молекулы CO, H2O и HCN. Их спектры относительно просты и хорошо изучены.

Сложнее обстоит дело с молекулами, состоящими более чем из трёх атомов. Чем больше в молекуле атомов, тем сложнее становятся спектры, постепенно превращаясь в мешанину из пересекающихся друг с другом линий, что, естественно, усложняет расшифровку. Особенно интересны пребиотические молекулы: аминокислоты, углеводы, азотистые основания. Обнаружение этих молекул в космосе может свидетельствовать о возможности формирования «молекул жизни» не только в условиях планет, расположенных в так называемой зоне обитания.

WASP-18b

Экзопланета WASP-18b имеет неестественный для своего типа размер и обёрнута в плотную атмосферу, состоящую из моноокиси углерода и лишённую воды. Расстояние до Земли — 325 световых лет.

В 2009 году в межзвёздной среде была обнаружена простейшая аминокислота — глицин, а также цианометанимин, прекурсор азотистого основания аденина, и этанамин, из которого может образоваться глицин. Но не стоит думать, что эти биомолекулы могли стать материалом для строительства жизни на нашей планете. Хотя пребиотические и просто биологически активные молекулы и детектируются в межзвёздном пространстве, вероятность, что они могли добраться до Земли, крайне мала. Они легко разрушаются тем же излучением звёзд, благодаря которому появились, и слишком рассеяны по космосу.

На Землю падают и падали метео­риты, в которых находят аминокислоты, углеводы и азотистые основания. Предполагается, однако, что «органические пассажиры» метеоритов сформировались не в межзвёздных пространствах, а на поверхности пылинок, образующих газопылевые туманности. Изучение химических веществ в далёком космосе не сводится к поиску строительных блоков жизни. Космохимикам часто удаётся найти то, что до сих пор считается экзотикой в лаборатории, например фуллерены.

Фуллерен — это молекула, представляющая собой замкнутую сферу из шестидесяти или большего количества атомов углерода.

Результаты изучения химического со­с­тава планет, комет и прочих небесных тел могут быть неожиданными. Например, в 2015 году при исследовании газового хвоста кометы C/2014 Q2, также известной как комета Лавджоя, было обнаружено 21 органическое вещество, в том числе этиловый спирт. В пиковые периоды активности комета Лавджоя каждую секунду расстаётся с таким количеством этилового спирта, которое содержится в 500 бутылках вина.

Комета С/2014 Q2 (Лавджоя)

Долгопериодическая комета, открытая 17 августа 2014 года австралийским астрономом Терри Лавджоем с использованием 0,2-метрового телескопа Celestron C8.

Сине-зелёное свечение кометы является результатом флуоресценции органических молекул и воды под УФ-излучением Солнца.

В газовом хвосте кометы было обнаружено 21 сложное вещество: вода, простые углеводороды, кислород, сера, азотсодержащие соединения, этиленгликоль, муравьиная кислота, ацетальдегид, этиловый спирт и простые сахара.

Вещества были определены в результате наблюдения с помощью 30-метрового телескопа в период с 13 по 26 января 2015 года, когда комета проходила на минимальном расстоянии от Земли (0,6 а. е., приблизительно 90 млн км).

Ещё одно интересное открытие из недавних: астрономы получили спектральные «отпечатки пальцев» переходных металлов в газообразном состоянии. Планета Kelt-9b разогрета настолько, что металлы испаряются до отдельных атомов, и в атмосфере горячего юпитера из созвездия Лебедя находят атомы и ионы железа и титана.

Читайте также:  Космос глеб самойлоff and the matrixx

NGTS-1b

Горячий юпитер, вращающийся вокруг карликовой звезды NGTS-1 массой и радиусом вдвое меньше Солнца и находящийся на расстоянии 600 световых лет от Земли.

Это исследование — первый пример наблюдения газообразных металлов в атмосфере планеты. Поскольку температура кипения железа и титана составляет 2862°C и 3287°C соответственно, в атмо­сферах планет эти металлы обычно присутствуют в виде твёрдых частиц, и их нельзя обнаружить с помощью спектрометрии.

Источник

Космическая химия

Зачем и как ученые исследуют состав далеких звезд и экзопланет

Современным астрономам известно около трех с половиной тысяч экзопланет, которые находятся от нас на расстоянии от четырех до двадцати восьми тысяч световых лет. Некоторые из них очень похожи на Землю. Попасть на какую-нибудь из них в обозримом будущем будет сложно — разве что человечество совершит огромный технологический скачок. Тем не менее, экзопланеты уже сегодня представляют собой огромный интерес с точки зрения астрохимии. Об этом — наш новый материал, написанный в партнерстве с Уральским федеральным университетом.

Основную часть вещества Вселенной (если говорить о барионном веществе) составляет водород — около 75 процентов. На втором месте идет гелий (около 23 процентов). Однако в космосе можно найти самые разнообразные химические элементы и даже сложные молекулярные соединения, включая органические. Изучением процессов образования и взаимодействия химических соединений в космосе занимается астрохимия. Представителям этой специальности очень интересно исследовать экзопланеты, потому что на них могут реализоваться самые разные сценарии, которые приведут к появлению необычных соединений.

Радуга на службе у астрономов

Основным инструментом получения информации о химическом составе отдаленных объектов является спектроскопия. Она использует тот факт, что атомы химических элементов (или молекулы соединений) могут излучать или поглощать свет только на определенных частотах, отвечающих переходам системы между различными уровнями энергии. В результате формируется спектр излучения (или поглощения), по которому можно однозначно определить вещество. Это как отпечатки пальцев, только для атомов.

Наглядным примером разложения света в спектр является радуга. Нам переходы от одного цвета к другому кажутся плавными и непрерывными, а на самом деле некоторых цветов в радуге нет, потому что определенные длины волн поглощаются содержащимися в Солнце водородом и гелием. Кстати, гелий впервые открыли именно по наблюдению за спектром Солнца (поэтому он и называется «гелий», от др.-греч. ἥλιος — «солнце»), а в лаборатории его выделили только через 27 лет. Это был первый успешный пример использования спектроскопии для изучения звезд.

Фраунгоферовы линии поглощения на фоне непрерывного спектра фотосферы Солнца.

В простейшем случае атома водорода спектр излучения представляет собой серию линий, отвечающих переходам между уровнями с различными значениями главного квантового числа n (эта картина хорошо описывается формулой Ридберга). Самой известной и удобной для наблюдений является линия Бальмера Hα, имеющая длину волны 656 нанометров и лежащая в области видимого спектра. Например, на этой линии астрономы наблюдают за далекими галактиками и распознают облака молекулярного газа, которые в большинстве своем как раз состоят из водорода. Следующие серии линий (Пашена, Брэкета, Пфунда и так далее) целиком лежат в инфракрасном диапазоне, а серия Лаймана расположена в области ультрафиолетового излучения. Это несколько усложняет наблюдения.

В то же время у молекул сложных соединений есть другой способ излучать кванты света, в каком-то смысле даже более простой. Связан он с тем, что вращательная энергия молекулы квантуется, что также позволяет им излучать в линиях (кроме того, они могут излучать и непрерывный спектр). Энергия таких квантов света не очень большая, поэтому их частота лежит уже в радиодиапазоне. Один из самых простых вращательных спектров принадлежит молекуле угарного газа CO, по ней астрономы тоже часто распознают облака холодного газа, когда не могут разглядеть в них водород. Методы радиоастрономии позволили найти в молекулярных облаках также метанол, этанол, формальдегид, синильную и муравьиную кислоту, а также другие элементы. Например, именно с помощью радиотелескопа ученые обнаружили алкоголь в хвосте кометы Лавджоя.

Что можно найти в космосе

Проще всего методы спектроскопии применять для изучения химического состава звезд. В этом случае астрономы исследуют спектры поглощения, а не излучения элементов. В самом деле, свет от них легко наблюдать, особенно в видимом диапазоне. Правда, химический состав звезд сам по себе обычно не очень интересен: по большей части они состоят из водорода и гелия с небольшой примесью тяжелых элементов.

Более тяжелые элементы образуются во вспышках сверхновых, и их тоже можно наблюдать. Например, некоторые ученые утверждают, что после недавно зарегистрированного слияния двух нейтронных звезд должны были образоваться огромные количества золота, платины и других элементов из последних строк таблицы Менделеева. Но так или иначе, очень сложные или органические соединения в звездах существовать не могут, поскольку они обязательно распадаются из-за больших температур.

Другое дело — облака холодного межзвездного газа. Они очень сильно разрежены и излучают гораздо слабее, чем звезды, зато сами по себе гораздо больше. И состав у них более интересный. В них можно найти огромное число самых разных молекул — начиная от простых двухатомных и заканчивая относительно сложными многоатомными органическими соединениями. Среди сложных молекул особенно стоит выделить «пребиотические» соединения, например, аминоацетонитрил, который может участвовать в образовании глицина, простейшей аминокислоты. Некоторые ученые предполагают, что в молекулярных облаках может образоваться и рибоза, один из основных кирпичиков органической жизни. Если такие соединения попадут в благоприятные условия, это уже будет ступенькой для возникновения жизни.

Изображение туманности Ориона M42, полученное Коуровской астрономической обсерваторией УрФУ. Красный цвет — это результат рекомбинации в линии излучения Hα на длине волны 656,3 нанометра.

Читайте также:  Зарядное устройство для аккумуляторного фонаря космос

Чуть ближе к планетам

К сожалению, для определения химического состава экзопланет метод спектроскопии применить сложно. Все-таки для этого нужно зарегистрировать свет от них, а звезда, вокруг которой вращается планета, мешает это сделать, поскольку она светит намного ярче. Пытаться наблюдать за такой системой — все равно что смотреть на свет спички на фоне прожектора.

Тем не менее, некоторую информацию об экзопланете можно получить, не измеряя спектр ее излучения напрямую. Хитрость заключается в следующем. Если у планеты есть атмосфера, она должна поглощать часть излучения звезды, причем в разных спектральных диапазонах по-разному. Грубо говоря, на одной длине волны планета будет казаться чуть меньше, а на другой длине — чуть больше. Это позволяет строить предположения о свойствах атмосферы, в частности, о ее химическом составе. Такой способ наблюдений особенно хорошо работает на горячих, близко расположенных к звездам планетах, потому что их радиус проще измерять.

Кроме того, химический состав планеты должен быть связан с составом газопылевого облака, из которого она образовалась. Например, в облаках с большим отношением концентраций атомов углерода к атомам кислорода образующиеся планеты будут состоять преимущественно из карбонатов. С другой стороны, химический состав звезды, образовавшейся из такого облака, также должен отражать его состав. Это позволяет строить некоторые предположения, основываясь на изучении спектра одной только звезды. Так, астрономы из Йельского университета проанализировали данные о химическом составе 850 звезд и обнаружили, что в 60 процентах систем концентрации магния и кремния в звезде указывают на то, что рядом с ней могут находиться каменистые планеты, похожие на Землю. В оставшихся 40 процентах химический состав звезд говорит нам о том, что состав планет вокруг них должен существенно отличаться от земного.

Вообще говоря, в последнее время прямая спектроскопия особенно горячих планет на фоне тусклых звезд все-таки стала возможна благодаря возросшей точности измерительных приборов. В этом случае уже можно искать в их свете следы различных химических элементов и сложных соединений. Например, с помощью ИК-спектрографа CONICA, установленного на телескопе VLT и объединенного с системой адаптивной оптики NAOS, ученым удалось измерить спектр экзопланеты HR 8799 c, которая вращается вокруг белого карлика и разогрета так сильно, что сама излучает свет. В частности, из анализа ее спектра следовало, что в атмосфере планеты содержится меньше, чем ожидалось, метана и угарного газа. Также совсем недавно астрономы измерили спектр другого «горячего юпитера», обнаружив в его атмосфере оксид титана. Тем не менее, непосредственные измерения спектра менее горячих каменистых планет (на которых существование жизни более вероятно) до сих пор представляет большую сложность.

Изображение системы HR 8799. Планета HR 8799 c находится в правом верхнем углу

Jason Wang et al / NASA NExSS, W. M. Keck Observatory

Состав планеты можно также определить косвенно, рассчитав ее плотность. Для этого нужно знать радиус и массу планеты. Массу можно найти, наблюдая за гравитационным взаимодействием планеты со звездой или другими планетами, а радиус оценить по изменению блеска звезды при прохождении планеты по ее диску. Очевидно, газовые планеты должны иметь меньшую плотность по сравнению с каменистыми. Например, средняя плотность Земли равна примерно 5,5 грамма на кубический сантиметр, и для поиска обитаемых планет астрономы ориентируются именно на это значение. В то же время плотность «самого рыхлого горячего юпитера» составляет 0,1 грамма на кубический сантиметр.

«Невозможные» соединения

С другой стороны, экзопланеты можно изучать и вовсе не выходя из лаборатории, как бы странно это ни звучало. Речь идет о моделировании (в основном численном) химических и физических процессов, которые должны на них происходить. Из-за того что условия на экзопланетах могут быть самые экзотические (простите за каламбур), вещества на них могут образоваться тоже самые необычные, «невозможные» в привычных для нас условиях.

Большинство открытых экзопланет относится к «горячим юпитерам» — сильно разогретым из-за небольшого расстояния до звезды газовым гигантам. Конечно, это не обязательно означает, что такие планеты преобладают в звездных системах, просто их легко найти. Температура атмосферы таких гигантов может превышать тысячу градусов по Цельсию, и состоит она в основном из паров силикатов и железа (при такой температуре оно начинает испаряться, но еще не кипит). В то же время, давление внутри этих планет должно достигать огромных значений, при которых водород и другие привычные для нас газы переходят в твердые агрегатные состояния. Эксперименты по моделированию подобных экстремальных условий проводятся давно, однако впервые металлический водород удалось получить только в январе этого года.

С другой стороны, в недрах каменистых планет также могут достигаться большие давления и температуры, а «зоопарк» химических элементов там может быть даже больше. Например, по некоторым оценкам, давление внутри каменистых планет с массами в несколько земных масс может достигать значений до 30 миллионов атмосфер (внутри Земли давление не превышает четырех миллионов атмосфер). С помощью компьютерного моделирования удалось выяснить, что в таких условиях начинают образовываться экзотические соединения магния, кремния и кислорода (которых в составе каменистых планет должно быть много). Например, при давлениях более 20 миллионов атмосфер стабильными становится не только привычный для нас оксид кремния SiO2, но и «невозможные» SiO и SiO3. Также интересно, что в недрах особенно массивных планет (до 20 масс Земли) может образоваться MgSi3O12 — оксид, обладающий свойствами электрического проводника.

Нестандартные условия можно моделировать не только на компьютере, но и в лаборатории, пусть и не для такого большого диапазона давлений и температур. С помощью алмазной наковальни можно получить давления до 10 миллионов атмосфер, как раз соответствующие условиям в недрах планет, а разогреть образец до высоких температур можно лазером. Эксперименты по моделированию таких условий действительно активно проводятся в последнее время. Например, в 2015 году группа ученых, в состав которой входили российские исследователи, экспериментально наблюдали образование пероксида магния MgO2 уже при давлениях около 1,6 тысяч атмосфер и температурах больше двух тысяч градусов Цельсия. Подробно об исследованиях поведения вещества при больших давлениях вы можете прочитать в другом нашем материале.

Читайте также:  Миланский браслет серый космос

Рентгеновская спектроскопия образца, состоящего из атомов магния и кислорода, при давлении около десяти тысяч атмосфер и температуре около двух тысяч Кельвин. Пунктиром выделена область с повышенным содержанием кислорода.

S. Lobanov et al / Scientific Reports

В УрФУ есть группа ученых, которые занимаются изучением протопланетного вещества в дальнем космосе и Солнечной системе. Мы попросили ведущего специалиста Коуровской астрономической обсерватории УрФУ Вадима Крушинского более подробно рассказать об изучении экзопланет.

N +1: Зачем мы изучаем экзопланеты?

Вадим Крушинский: Еще 25 лет назад нам было известно о существовании единственной планетной системы — Солнечной. Теперь же мы уверены в том, что планеты есть у огромного числа звезд, возможно, почти у каждой звезды во Вселенной. Прогресс технологий получения и обработки данных привел к тому, что найти свою экзопланету может даже продвинутый любитель астрономии. Открытие очередного «горячего юпитера» — это открытие целой планетной системы, просто мы видим только самую заметную ее часть. Планеты меньшего размера или находящиеся дальше от родительской звезды открываются гораздо реже, это эффект наблюдательной селекции.

Вадим Крушинский в составе группы ученых Уральского федерального университета работает над проектом по исследованию протопланетного вещества в дальнем космосе, Солнечной системе и на Земле.

Это один из шести прорывных научных проектов университета, им занимается стратегическая академическая единица (САЕ) — Институт естественных наук и математики УрФУ — вместе с академическими и индустриальными партнерами из России и других стран. От успеха исследователей зависят позиции университета в российских и международных рейтингах, прежде всего в предметных.

Что же можно узнать об экзопланетах, наблюдая за ними с таких больших расстояний?

Прежде всего нужно определить свойства родительской звезды. Это позволяет вычислить размеры планет, их массу и радиусы орбит. Зная светимость родительской звезды и радиус орбиты, можно оценить температуру поверхности экзопланеты. Кроме того, атмосферы планет имеют разную прозрачность в разных спектральных диапазонах (об этом писал еще Ломоносов). Для наблюдателя это выглядит как разный диаметр планеты при наблюдении в разных фильтрах. Это позволяет обнаружить атмосферу и оценить ее толщину и плотность. Свет родительской звезды, прошедший через атмосферу планеты во время транзита, несет информацию о составе ее атмосферы. А во время вторичного затмения, когда планета прячется за свою звезду, мы можем наблюдать изменения спектра, связанные с отражением от атмосферы и поверхности планеты. Так же, как и у Луны, у экзопланет можно наблюдать фазы. Если изменения блеска системы, вызванные этим эффектом, не постоянны, то это говорит о том, что альбедо планеты (способность отражать свет) меняется. Например, вследствие движения облаков в ее атмосфере.

Свойства экзопланет должны быть связаны со свойствами родительских облаков. Изучая материю на стадии звездообразования, мы вносим вклад в понимание эволюции планетных систем. К сожалению, Земля претерпела значительные изменения в ходе истории, и уже мало напоминает то протопланетное вещество, из которого когда-то родилась. Но совсем рядом с нами летают метеориты и кометы. Некоторые из них даже падают на Землю и попадают в лаборатории. До каких-то из них могут долететь космические аппараты. Прямо перед нами отличный объект исследования! Остается только доказать, что и другие планетные системы эволюционировали так же, как наша.

Можно ли найти жизнь на других планетах?

Для этого нужно обнаружить биомаркеры — проявления жизнедеятельности организмов. Лучшим биомаркером были бы передачи условного «Первого канала», но сойдет и наличие кислорода. Без жизни кислород на Земле был бы связан и исчез из атмосферы за десяток тысяч лет. Обнаружив кислород в атмосферах экзопланет, мы сможем утверждать, что не одиноки во Вселенной. Как его найти, было рассказано выше. Но вот только приборов с достаточной чувствительностью пока нет. Прорыв в этом направлении ожидается после запуска космического телескопа им. Джеймса Вебба (JWST).

Что могут сделать в этой области ученые из России и, в частности, из УрФУ?

Несмотря на то, что в плане изучения экзопланет Россия отстает от остального научного сообщества, у нас есть возможность сократить это отставание. Относительно малобюджетные программы по поиску экзопланетных систем (пилотный проект KPS Коуровской обсерватории УрФУ) позволят сделать первый шаг и помогут в наборе данных для статистического анализа. Высокоточные фотометрические измерения можно проводить и на имеющемся оборудовании, это позволяет искать атмосферы у некоторых экзопланет. Спектральные наблюдения во время транзитов и вторичных затмений относительно доступны для крупнейших телескопов России. Что нужно сделать для старта этих программ — найти заинтересованных людей и оплатить их работу. Немного вложиться в оборудование.

Второе направление — моделирование и интерпретация наблюдаемых эффектов. Это может быть как теоретическая работа, так и экспериментальная — исследование поведения и свойств образцов в условиях космоса и сравнение с наблюдаемыми эффектами. Для этого необходимо создание установки, имитирующей условия космического пространства. В качестве образцов можно использовать метеориты из коллекции УрФУ.

Источник

Adblock
detector