Граница ударной волны солнца
Гелиосфера — область околосолнечного пространства, в которой плазма солнечного ветра движется относительно Солнца со сверхзвуковой скоростью. Извне гелиосфера ограничена бесстолкновительной ударной волной, возникающей в солнечном ветре из-за его взаимодействия с межзвёздной плазмой и межзвёздным магнитным полем.
Первые 10 миллиардов километров скорость солнечного ветра составляет около миллиона километров в час. По мере того, как он сталкивается с межзвёздной средой, происходит его торможение и смешение с ней. Граница, на которой происходит замедление солнечного ветра, носит название гелиосферной границы ударной волны; граница, вдоль которой уравновешивается давление солнечного ветра и межзвёздной среды, носит название гелиопаузы; граница, на которой происходит столкновение межзвёздной среды с набегающим солнечным ветром — головная ударная волна.
|
ГЕЛИОСФЕРА |
Расстояние границы гелиосферы от Солнца определяется балансом динамического давления солнечного ветра и давления межзвёздного газа и магнитного поля. Так как Солнечная система движется относительно межзвёздной среды со скоростью 20-25 км/с, то гелиосфера несферична. Теоретические оценки и косвенные экспериментальные данные показывают, что минимальное расстояние ударной волны от Солнца равно 50-200 а.е., а расстояние контактной поверхности (гелиопаузы) от ударной волны примерно в 2-3 раза меньше. Поскольку межзвёздный газ движется относительно Солнца со сверхзвуковой скоростью, то за контактной поверхностью находится, внешняя ударная волна (головная), в которой происходит торможение межзвёздной плазмы. На больших расстояниях от Солнца (более 10 а. е.) солнечный ветер влияет только на движение ионизованного компонента межзвёздной среды. На движение нейтральных атомов солнечная радиация и другие факторы начинают заметно влиять только на расстояниях примерно 5 а. е. от Солнца.
|
ГЕЛИОСФЕРА |
Понятие «гелиосфера» является частным примером более общего явления — астросферы («пузырь звёздного ветра»). При этом физика формирования и существования пузырей в основном аналогична физике гелиосферы.
• Солнце: солнечный ветер
Солнечный ветер представляет собой поток частиц (ионизированных атомов солнечной короны) и полей, в частности, магнитных. По мере того как Солнце вращается, делая оборот за 27 суток, магнитное поле, переносимое солнечным ветром, принимает форму спирали.
• Солнце: гелиосферный токовый слой
Гелиосферный токовый слой представляет собой «рябь» в гелиосфере, которая создаётся магнитным полем Солнца, вращающимся и меняющим свою полярность. Гелиосферный токовый слой представляет собой поверхность в пределах Солнечной системы, при пересечении которой изменяется полярность магнитного поля Солнца. Эта поверхность простирается вдоль экваториальной плоскости Солнца и достигает границ гелиосферы. Гелиосферный токовый слой вращается вместе с Солнцем, делая один оборот за 27 дней.В процессе вращения Солнца его магнитное поле извивается в особой формы спираль.
|
Гелиосферный токовый слой (показан до орбиты Юпитера) |
ГЕЛИОСФЕРА |
ВНЕШНЯЯ СТРУКТУРА:
Внешняя структура гелиосферы определяется взаимодействием солнечного ветра с потоком частиц в межзвёздном пространстве. Потоки солнечного ветра движутся во все стороны от Солнца, вблизи Земли имея скорости в несколько сотен километров в секунду. На определённом расстоянии от Солнца, далеко за орбитой Нептуна, этот сверхзвуковой поток начинает снижать свою скорость. Это торможение происходит в несколько этапов:
|
ГЕЛИОСФЕРА |
• Гелиосферная ударная волна
Граница ударной волны — это поверхность внутри гелиосферы, на которой происходит резкое замедление солнечного ветра до звуковых скоростей (относительно скорости самого Солнца). Это происходит из-за того, что вещество солнечного ветра «наталкивается» на межзвёздное вещество. Полагают, что в нашей Солнечной системе граница ударной волны находится на расстоянии 75-90 астрономических единиц (около 11-13,5 млрд км). В 2007 году Вояджер-2 пересёк границу ударной волны. (Фактически он пересекал её пять раз, из-за того, что граница непостоянна и меняет свое расстояние от Солнца в результате колебаний солнечной активности и испускаемого Солнцем вещества).
Ударная волна возникает потому, что частицы солнечного ветра движутся со скоростью около 400 км/с, в то время как скорость звука в межзвёздном пространстве составляет примерно 100 км/с (точное значение зависит от плотности, и потому может меняться). Хотя межзвёздное вещество имеет очень малую плотность, оно все-таки создаёт постоянное, хоть и незначительное давление, которого на определённом расстоянии от Солнца становится достаточно, чтобы затормозить солнечный ветер до звуковых скоростей. В этом месте и возникает ударная волна.
НОВЫЕ ДАННЫЕ |
Свидетельства, представленные Эдом Стоуном на встрече Американского Геофизического союза в мае 2005 года, утверждают, что космический аппарат Вояджер-1 пересёк границу ударной волны в декабре 2004, когда находился на расстоянии 94 а. е. от Солнца. Такой вывод был сделан по изменению показателей магнитного поля, получаемых с аппарата. Аппарат Вояджер-2, в свою очередь, зафиксировал обратное движение частиц уже на расстоянии 76 а. е. в мае 2006 г. Это говорит о несколько несимметричной форме гелиосферы, северная половина которой больше южной. В июне 2011 года было объявлено, что благодаря исследованиям «Вояджеров» стало известно, что магнитное поле на границе Солнечной системы имеет структуру, похожую на пену. Это происходит из-за того, что намагниченные материя и мелкие космические объекты образуют местные магнитные поля, которые можно сравнить с пузырями. |
НОВЫЕ ДАННЫЕ |
Гелиосферная мантия — область гелиосферы за пределами ударной волны. В ней солнечный ветер тормозится, сжимается и его движение приобретает турбулентный характер. Гелиосферная мантия начинается на расстоянии 80-100 а. е. от Солнца. Однако, в отличие от внутренней области гелиосферы, мантия не имеет сферической формы. Её форма скорее похожа на вытянутую кометную кому, простирающуюся в противоположном движению Солнца направлении. Толщина мантии со стороны набегающего межзвёздного ветра намного меньше, чем с противоположной.
Гелиопауза — теоретическая граница, на которой происходит окончательное торможение солнечного ветра. Его давление уже неспособно оттеснять межзвёздное вещество из Солнечной системы и происходит перемешивание вещества солнечного ветра с межзвёздным.
Согласно одной из гипотез, между головной ударной волной и гелиопаузой существует область, заполненная горячим водородом, называемая водородной стеной. Эта стена содержит межзвёздное вещество, сжатое взаимодействием с гелиосферой. Когда частицы, испускаемые Солнцем, сталкиваются с частицами межзвёздного вещества, они теряют свою скорость, преобразовывая кинетическую энергию в тепловую, что приводит к формированию области нагретого газа.
В качестве альтернативы предлагается определение, что гелиопауза — это магнитопауза, граница, ограничивающая солнечную магнитосферу, за которой начинается общегалактическое магнитное поле.
НОВЫЕ ДАННЫЕ |
В декабре 2011 аппарат «Вояджер-1» был примерно в 119 а. е. (17,8 млрд км) от Солнца и долетел до так называемого региона стагнации — последнего рубежа, отделяющего аппарат от межзвёздного пространства. Область стагнации представляет собой регион с довольно сильным магнитным полем (индукция резко возросла почти в два раза по сравнению с предыдущими значениями) — давление заряженных частиц со стороны межзвёздного пространства заставляет поле, создаваемое Солнцем, уплотняться. Кроме этого, аппарат зарегистрировал рост количества высокоэнергетических электронов (примерно в 100 раз), которые проникают в Солнечную систему из межзвёздного пространства. В первой половине 2012 года «Вояджер-1» вышел на границу межзвёздного пространства. Датчики автоматической станции с января по начало июня зафиксировали рост уровня галактических космических лучей — высокоэнергетических заряженных частиц межзвёздного происхождения — на 25%. Кроме того, датчики зонда зафиксировали резкое снижение количества заряженных частиц, исходящих от Солнца. Эти данные указали учёным, что «Вояджер-1» приближается к границе гелиосферы и вскоре выйдет в межзвёздное пространство. В конце августа 2012 года датчики аппарата зафиксировали резкое снижение регистрируемых частиц солнечного ветра. В отличие от предыдущих подобных случаев, в этот раз тенденция к снижению сохранилась. В 2012 или 2013 году «Вояджер-1» вышел за пределы гелиосферы, в межзвёздное пространство |
НОВЫЕ ДАННЫЕ |
• Головная ударная волна
Гипотеза утверждает, что Солнце так же создаёт ударную волну при движении через межзвёздное вещество. Эта ударная волна имеет форму дуги натянутого лука, из-за чего и получила своё второе название — дуговая. Она подобна волне, возникающей на водной поверхности перед носом движущегося судна, и возникает по тем же самым причинам. Головная волна возникнет в случае, если межзвёздное вещество движется навстречу Солнцу со сверхзвуковой скоростью. «Ударяясь» о гелиосферу, межзвёздный ветер тормозится и формирует ударную волну аналогичную волне, которая формируется внутри гелиосферы при торможении солнечного ветра.
Источник
За пределами Солнечной системы
Почти все, изучая в школе астрономию или просто интересуясь звездным небом, более или менее представляют себе Солнечную систему. Знают, что ее центром является наше светило, вокруг которого по своим орбитам вращаются различные небесные тела. Но Вселенная не заканчивается на этом. Она безгранична. Так что же там, за пределами Солнечной системы?
Благодаря использованию орбитального телескопа Кеплер удалось найти много обитаемых планет. Так же мы побывали вне нашей области галактики благодаря межпланетной станции НАСА, запущенной в 70-х годах 20 века. Этот зонд является вершиной технологических и инженерных достижений того времени.
Фото орбитального телескопа Кеплер
Запустили его в далеком 2009 году. В задачи Кеплера входило обнаружение внесолнечных планет. Спустя пару лет ученые начали получать множество снимков. И по последним из них стало очевидно, что зонд справился с поставленной задачей намного лучше, чем ожидалось. И, как говорят ученые, работающие в проекте, таких планетоподобных объектов много. Завершив подсчеты, они полагают, что приблизительно 1,2 % звезд имеют схожие с нашей Землей планеты.
Границы Солнечной системы
Принятая в астрономии граница Солнечной системы начинается на удалении порядка 4,5 миллиарда километров на радиусе орбиты самой дальней планеты Нептун. Здесь же начинается пояс Койпера – масса карликовых ледяных тел, в состав пояса входит Плутон, который до 2006 года считался полноценной планетой.
Где заканчивается Солнечная система? На этот вопрос ответим так. Известный нам мир заканчивается на удалении 14 миллиардов километров. Здесь спровоцированный нашим светилом поток ионизированных космических частиц сталкивается с межзвёздным веществом, еще называемый солнечный ветер, и создает ударную волну. В этой области начинается межзвездное пространство, образуя конечную границу. При этом гравитация центральной звезды еще действует, но ее величина уже достаточно мала. Покидая мир рядом с Солнцем, мы надеемся найти фрагмент Вселенной, аналогичный нашему.
Очень жаль, что звездолёт, который позволит полететь человеку за переделы Солнечной системы, еще не изобретён.
Гелиопауза Солнечной системы
Как понять что такое Гелиопауза? Это мнимая граница, что возникла меж внешним слоем солнечного ветра и газом, движущимся в межзвёздной среде. Расстояние, на котором происходит мнимое ограничение гелиосферы. примерно 100 а.е. от нашего светила.
Как раз саму гелиопаузу смог пересечь «Вояджер» в уже далеком августе 2013. Он попал в область, которую астрономы назвали как «смешанная переходная зона межзвездного пространства». Несмотря на такое удаление от нашего дома, Вояджеру предстоит еще огромный путь через облако Оорта. Еще ни один десяток тысяч лет космический зонд на себе будет чувствовать притяжение нашего светила.
Что находится за пределами Солнечной системы?
Фото орбитального телескопа Вояджер 1
Американские корабли серии Вояджер были запущены в 1977 году учеными НАСА с целью исследования окраин области влияния Солнца, поиска и исследования внесолнечных планет. Оба беспилотника успешно достигли Сатурна и Юпитера, передав на землю четкие качественные снимки газовых гигантов. После чего Вояджер-2 пошел к Урану и Нептуну, а Вояжер-1 направился к границам нашей системы. К 2100 году, то есть более, чем через 80 лет Вояджер-1 окажется на расстоянии около 65 миллиардов километров от Солнца и полностью покинуть пределы Солнечной системы. На сегодня это единственный робот, отдалившийся от Солнца на такое расстояние. На борту Вояджера находится информация о Земле, ее положении в Космосе, ее жителях, флоре и фауне.
Медная пластина с информацией о Земле
Вы знали? Пять космических аппаратов достигли достаточной скорости для путешествия за пределы нашей Солнечной системы. Voyager 1 перешел в межзвездное пространство в 2012 году. Voyager 2 и New Horizons все еще активны и скоро перейдут в пространство между звездами. Пионеры 10 и 11 также достигли скорости вылета. При этом оба космических аппарата неактивны в течение многих лет. Именно благодаря этим зондам и множеству исследований мы знаем, что находится за Солнечной системой.
Последним рубежом, еще как-то связывающим пространство с Солнцем, является облако Оорта. Оно представлено большим скоплением ледяных глыб. Именно из этой области под воздействием ударной волны и других физических процессов в сторону Солнца периодически устремляются кометы.
И последний важный рубеж, который обрывает любую гравитационную связь с нашей звездой – 9,5 триллионов километров – величина, равная одному световому году.
Планеты вне Солнечной системы
За облаком Оорта начинается реальная пустота, о свойствах которой уже не одно десятилетие спорят астрофизики разных стран. Можно смело говорить, что мир Солнца тут окончен.
Представление художница мира за границей нашей системы
Расчёты показали, что ближайшая соседняя звезда находится на расстоянии четырех световых лет. Кроме того, современные способы изучения космического пространства позволяют ученым обнаруживать экзопланеты. Экзо – с греческого переводится как снаружи, вне (чего-то). То есть в данном случае это внесолнечные планеты.
Визуально обнаружить эти небесные тела невозможно. Это объясняется тем, что они отражают свет своей звезды в сторону, противоположную от Солнца. Для их обнаружения ученые применяют два способа:
- способ лучевых скоростей, с помощью него обнаружено около 20% всех планет;
- способ транзитов, он помог открыть порядка 75% экзопланет
Физический смысл метода лучевых скоростей основан на фиксации изменений смены длин, излучаемых световых волн при прохождении планетой траверза Земли, то есть на Доплеровском эффекте. При методе транзитов используется процесс наблюдения за затмением близлежащей звезды, которую перекрывает проходящая между Землей и соседней звездой искомая планета. Фиксируя величину и продолжительность закрытия планетой звезды, ученые ждут повторного закрытия. Минус в долгом ожидании повторного затмения, которое может достигать нескольких земных лет.
Ученые уже выявили 1235 экзопланет, расположенных только в созвездии Лебедя. Оно находится в нашей галактике. По первым подсчетам только одна наша галактика может иметь колоссальное количество планет, а именно — более миллиарда. На их поверхности или в подповерхностных слоях могут существовать живые организмы. Большая часть таких миров расположена ближе к центру галактики. Такие предположения были и раньше, но сейчас, благодаря новейшим космическим исследованиям, это подтверждается наукой.
Классификация экзопланет
Для удобства классификации, открытые экзопланеты ученые, условно, разделили на группы:
- горячие Юпитеры – сходные с одноименным гигантом, но расположеные на близкой орбите к своему светилу;
- пульсарные – небесные тела, вращающиеся вокруг пульсара – остатков сверхновой звезды, обладающей источником мощнейшего электромагнитного излучения;
- суперземля –гигант земного типа, превышающих Землю более чем в десятки раз;
- эксцентрические – тела с довольно растянутой эллипсовидной орбитой, что приводит к серьезным годовым температурным колебаниям;
- горячие Нептуны – сходные с одноименной планетой тела, расположенные близко к местному светилу;
- планета-океан – полностью заполненные водой или льдом объекты,
- хтоническая планета –расположена очень близко к звезде и представляет собой раскаленную субстанцию, покрытую лавой;
- планета-сирота – блуждающие в пространстве шарообразные тела, не примкнувшие ни к одной звезде.
Конечно, изучая пространство за пределами нашей звездной системы, человек пытается найти подобные себе формы жизни и хоть на немного приблизиться к разгадкам тайн Вселенной.
Некоторые известные экзопланеты
Kepler-186f
Эта экзопланета расположилась в созвездии Лебедь, вращаясь на своей орбите вокруг звезды Kepler-186. Её размер практически равен размеру Земли. Ученые предполагают, что она имеет твердую поверхность, но информация о массе и химическом составе пока не известна.
Период вращения вокруг своей звезды составляет всего 130 наших суток. При этом Kepler-186f получает энергии от своего светила всего 30 процентов, от той, что получает от Солнца Земля. Состав атмосферы пока установить нельзя, но теоретики говорят о схожести с земным. Освещенность на ней такая, как и у нас. Это открытие для нас важно тем, что есть и другие планеты земных размеров, при этом их орбиты находятся в «зоне жизни».
Kepler-186f и Земля
Kepler-10-C
Найдена в созвездии Дракон, и относится к типу «суперземля». Её светило — желтый карлик, которому 12 млрд. лет. Температура на Kepler — 5600 K, масса 7.4 земных. Первоначальные измерения указывали, что она имеет каменистую структуру. Но дальнейшие исследования д говорят о том, что планета является нестабильной.
Kapteyn b
Kapteyn b расположилась в созвездии Живописца, неподалеку от красного субкарлика. Имеет статус старейшей экзопланеты. Её возраст примерно в 2.5 раза больше нашей планеты. Масса — больше примерно в 5 раз. Она расположилась в зоне обитаемости, имеет жидкую воду и свою атмосферу. Астрономы пришли к такому мнению, учитывая температуру в -50°C на одной стороне и до 10°C на солнечной стороне. Год длится всего 48 суток. Все это говорит о необходимых условиях для возникновения жизни. Kapteyn b может быть обитаемой.
Источник