Меню

Фотонные двигатели космос что это

Фотонный двигатель

Фотонный двигатель (квантовый) — гипотетический реактивный двигатель, где источником энергии служит тело, которое излучает свет. Фотон имеет импульс, и, соответственно, при истекании из двигателя, свет создает реактивную тягу. Теоретически фотонный двигатель может развить максимальную тягу из расчёта на затраченную массу космического аппарата, позволяя достигать скоростей, близких к скорости света, однако практическая разработка таких двигателей, судя по всему, дело достаточно отдалённого будущего.

Содержание

Аннигиляционный фотонный двигатель

В этом разделе не хватает ссылок на источники информации.

Чаще всего обсуждаются и упоминаются в научно-фантастической литературе идеи создания такого двигателя с использованием антивещества. Энтузиасты считают, что взаимодействие вещества и антивещества позволяет перевести практически всю вступающую в реакции массу в излучение.

Тем не менее, надо отметить, что распространенная в литературе формулировка «при аннигиляции выделяются гамма-кванты» в принципе физически неверна. Гамма-кванты прямо выделяются только при электрон-позитронной аннигиляции. В случае аннигиляции покоящейся (не релятивистской) пары протон-антипротон происходит сложно-цепочечная реакция: образование (часто) адронного мезоатома с временем жизни порядка 10 −27 секунды, затем распад этого атома (собственно аннигиляция) с образованием пионного комплекса, состоящего из 2-12 (в среднем 5-7) нейтральных (1/3) и заряженных (2/3) пи-мезонов (пионов), затем за время порядка 10 −17 секунды нейтральные пионы распадаются с выделением гамма-квантов с пиком энергии в спектре около 70 МэВ, в то время, как заряженные пионы, имеющие значительно много большее время жизни, до

1,5×10 −4 секунды, удаляются с околосветовыми скоростями из области реакции (в вакууме и разреженной среде — до 20-40 м, в плотном веществе, например, графите — порядка 0,1-0,2 м) и затем распадаются с образованием мюонов, в свою очередь распадающихся (в основном, 99,998 %, канале распада) на нейтрино и электроны.

Таким образом, при аннигиляции антивещества — то есть вещества, состоящего из антипротонов и позитронов, примерно 1/3 энергии выделится в виде жесткого гамма-излучения с энергией квантов 511 кэВ (от позитронно-электронной аннигиляции) и 70 МэВ от распада нейтральных пионов,

1/3 энергии — в виде заряженных частиц с достаточно большим пробегом, а

1/3 — в виде нейтрино, то есть безвозвратно будет потеряна. И «реальный» ракетный двигатель на антиматерии скорее должен выглядеть, как магнитная ловушка для заряженных частиц, а не как некое «зеркало» [источник не указан 827 дней] .

При такой невысокой массовой отдаче, порядка 23% [1] , эксплуатация фотонного двигателя становится менее выгодной. Значительно повысить его эффективность позволяет использование внешних ресурсов. Прямоточный аннигиляционный фотонный двигатель и магнитные ловушки, собирающие рассеянный в межзвездной среде водород и гелий, дают возможность существенно уменьшить запасы рабочего вещества. К сожалению количество антивещества в межзвездной среде очень мало — порядка одного атома антиводорода или антигелия на 5*10 6 атомов обычного водорода, что делает невозможным использовать этот внешний ресурс. Поэтому проблема получения большой массы антивещества и его хранения на борту остается актуальной и для прямоточного аннигиляционного фотонного двигателя. [2]

Технические проблемы

В сегодняшнем состоянии идея фотонного реактивного двигателя невероятно далека от технического воплощения. Она содержит ряд проблем, которые сейчас даже теоретически не могут быть решены: Это:

  1. Проблема получения большого количества антивещества
  2. Проблема его хранения
  3. Проблема полного использования при «сжигании» — чтобы аннигиляция происходила полностью, и в основном с выделением именно фотонов
  4. Проблема создания «зеркала», способного очень хорошо отражать гамма-излучение и другие продукты аннигиляции.

Фотонный двигатель на магнитных монополях

Если справедливы некоторые варианты теорий Великого объединения, такие как модель ‘т Хоофта — Полякова, то можно построить фотонный двигатель, не использующий антивещество, так как магнитный монополь гипотетически может катализировать распад протона [3] [4] на позитрон и π 0 -мезон:

π 0 быстро распадается на 2 фотона, а позитрон аннигилирует с электроном, в итоге атом водорода превращается в 4 фотона, и нерешённой остаётся только проблема зеркала.

В то же время в большинстве современных теорий Великого объединения магнитные монополи отсутствуют, что ставит под сомнение эту привлекательную идею.

Читайте также:  Толстовки с принтом космос

Упоминания в научной фантастике

  • В фильме «Москва — Кассиопея» главные герои отправляются в космос на космическом корабле, использующем в качестве топлива антивещество.

  • В сериале «Star Trek (Звездный путь)» бортовая энергосистема зведолетов использует антиматерию т. е. антивещество в качестве энергоносителя, но двигатели звездолетов не фотонные.
  • В романе Ивана Ефремова «Туманность Андромеды» звездолёты землян используют фантастическое вещество анамезон «с разрушенными мезонными связями ядер атомов, обладающее близкой к световой скоростью истечения» [5] .
  • Станислав Лем «Непобедимый» и «Фиаско» — космический корабль на фотонной тяге.
  • В рассказе Вл. Михайлова «Ручей на Япете» (1971) — космический корабль на фотонной тяге «Синяя птица»
  • В произведениях братьев Стругацких (см. Хиус, Страна багровых туч).
  • В произведении Бернара Вербера — «Звездная бабочка»
  • В компьютерной игре «Sins of a Solar Empire» вся техника всех рас использует антивещество.
  • В книге «Сомнамбула» (все части) Александра Зорича — крейсер «Справедливый» летает с помощью фотонной тяги.
  • В книге «Автостопом по галактике» Адамса Дугласа Ноэля — космический корабль «Золотое сердце», летает на «невероятностной тяге», в том числе и на «обычной фотонной тяге».
  • В песне «Тау Кита» Владимира Высоцкого астронавт путешествует на космическом корабле, имеющем в своей конструкции отражатель и двигающемся «по световому лучу».

Патенты на фотонный двигатель

Данный раздел имеет чрезмерный объём или содержит маловажные подробности.

Возможно, эта часть статьи содержит оригинальное исследование.

В настоящее время существуют несколько патентов России на фотонный двигатель. Однако они содержат физические ошибки, и в отсутствие эффективных рабочих образцов эти патенты могут рассматриваться лишь как курьёзы:

  1. Патент на изобретение № RU 2201527 С1 от 18.05.1999. Автор(ы): Горбачев Евгений Александрович. Патентообладатель(и): Горбачев Евгений Александрович.
    Данный патент основан на неверном предположении, что разбив один пучок на несколько пучков меньшей мощности, мы получим бо́льшую тягу.
  2. Патент на полезную модель № RU 64298 U1 от 05.02.2007. Автор(ы): Урмацких Анатолий Васильевич, Урмацких Светлана Анатольевна, Урмацких Юлия Анатольевна. Патентообладатель(и): Урмацких Анатолий Васильевич.
    Данный патент основан на неверном предположении, что тягу может увеличить пассивный резонатор.
  3. Заявка на изобретение № RU 2008142777 A от 10.05.2010. Автор(ы): Дзюба Анатолий Филиппович.
    Данная заявка содержит не имеющий физического смысла наукообразный бред:
Реактивный двигатель с силой тяги, вызываемой реактивной силой струи газа, истекающей из сопла, отличающийся тем, что сила тяги вызывается реактивной силой виртуальных фотонов, излучаемых совокупностью протонов, стабилизируемыми магнитным полем сфероида, при этом излучение виртуальных фотонов подавлено в направлении вектора тяги возвратно-поступательными колебательными движениями в этом направлении локального участка магнитного поля сфероида, вызываемыми источником колебаний.

Фотонный двигатель в реальности

Согласно одной из гипотез, аномальное ускорение космических аппаратов «Пионер-10» и «Пионер-11» вызвано анизотропией теплового излучения аппаратов. Если это так, то таким образом зафиксирован эффект, аналогичный фотонному двигателю. Аналогично при определении параметров гравитационного поля Земли из траекторий движения геофизических спутников LAGEOS в расчёты входит давление солнечного света (Солнечный парус) и анизотропия теплового излучения спутников.

Источник

ОСНОВЫ ФОТОННОГО РАКЕТНОГО ДВИГАТЕЛЯ

Михаил Пищулин

Первое место в ряду перспективных источников энергии занимает управляемый термоядерный синтез (УТС). Перспективы, которые обещает осуществление УТС, беспрецедентны по своим масштабам, и это заставляет ученых всего мира упорно штурмовать термоядерную крепость. Этот штурм продолжается более 50 лет, но, к сожалению, несмотря и на беспрецедентные финансовые затраты по этим проектам, человечество не получило еще ни одного ватта обещанной энергии.

Если гипотетически представить, что все трудности в каждом способе УТС (магнитном удержании плазмы, инерциальном синтезе, холодном ядерном синтезе) успешно преодолены и одна из глобальных задач человечества решена, то мы не достигнем главного. Мечта о межзвездных полетах и освоении ближнего и дальнего космоса останется мечтой. Кроме того, без фотонных ракетных двигателей, как средства доставки, наша планета останется слишком уязвимой для космических «странников» типа комет, астероидов.
О высокой эффективности УТС свидетельствует положительный баланс в извлечении энергии.

Читайте также:  Опель вектра с космоса

С появлением квантовых генераторов возникли новые направления в физике, были открыты ранее неизвестные эффекты. На основе некоторых из них можно создать устройство, позволяющее получить мощное локальное магнитное поле с индукцией 10 12 …10 13 Гс. Такие поля достигаются на стадиях эволюции звезд при быстром сжатии (коллапсе) их ядра с последующим образованием нейтронной звезды.

Создание магнитного поля с индукцией 10 13 Гс

Начиная с 70-х годов прошлого века группа ученых в составе А. Борисова, А. Боровского, В. Коробкина, А. Прохорова и других изучала явление самоканалирования мощных ультракоротких лазерных импульсов в веществе. Этот режим волноводного распространения света в веществе предсказал Г. Аскарьян в 1962 г. Критическая мощность, необходимая для релятивистско-скрикционного самоканалирования ультракороткого импульса, составляет величину Р

3·10 11 Вт. Как установлено, обнаруженный нелинейный режим, приводящий к сильной самоконцентрации оптической энергии в малой области, перемещающейся в веществе, открывает интересные перспективы. Одним из возможных приложений является генерация сверхсильных магнитных полей. В ходе экспериментов с конденсированными средами был обнаружен эффект возникновения лазерной ЭДС в металлах. Лазерная ЭДС проявлялась, когда один из торцов металлического кольца (аналог биттеровского) освещали ультракоротким импульсом лазера с мощностью 1…10 МДж. Выбитые лучом лазера с торца электроны переходили на противоположный торец, отчего возникал импульс тока в 50 кА. Возникающее магнитное поле было порядка 10 7 Гс. Диаметр металлического кольца был на уровне нескольких миллиметров (для уменьшения реактивного сопротивления), а длительность лазерного импульса — примерно t =10 -6 с. При большей длительности импульса кольцо расплавится или его разорвет магнитное поле. Но при импульсе в одну микросекунду в нем не возникали даже механические напряжения.

При экспериментальной работе была получена оценка величины магнитного поля в веществе в самоканалированном режиме: индукция составляет

Для получения более высоких показателей магнитного поля необходимо увеличить плотность электронов в среде (для металлов

10 23 см -3 ) или увеличить диаметр лазерного луча, сохранив интенсивность излучения. В связи с тем, что повышение интенсивности излучения связано с отдаленной перспективой развития лазерных технологий, целесообразно попытаться увеличить плотность электронов. Для этого необходимо разместить соленоиды, подобные биттеровскому, один за другим. При такой компоновке, если лазерный луч или два луча от разных лазеров будут иметь возможность последовательно и кратковременно освещать эмиссионные торцы соленоидов, то при освещении торца первого соленоида в нем возникнет мощный импульс магнитного поля, который по закону электромагнитной индукции произведет разделение зарядов в соседнем соленоиде. Разделение зарядов означает, что электронная компонента (валентные электроны) под действием пандеромоторной силы выталкиваются из объема металла соленоида на эмиссионный торец. Следовательно, на нем произойдет возрастание электронной плотности. Если в этот момент лазерный луч осветит эмиссионный торец соленоида, то значение лазерной ЭДС возрастет. Как следствие, возрастет и возникающее магнитное поле.
Численные расчеты пандеромоторной силы, действующей на свободные электроны во втором соленоиде вследствие влияния магнитного поля В = 10 7 Гс первого соленоида свидетельствуют о возрастании плотности электронной компоненты на эмиссионной поверхности второго соленоида на семь порядков, т.е. показатель плотности близок к значению 10 30 см -3 . Возросшая плотность будет наблюдаться в слое меньшем, чем глубина скин-эффекта для лазерного излучения. Повышение плотности электронной компоненты позволит подойти к значениям магнитного поля с индукцией порядка

Достижению таких значений магнитного поля будет способствовать и оптическое явление, связанное с перестройкой структуры конденсированной среды под воздействием мощного лазерного излучения.

Согласно теории, заряженные частицы при движении в магнитном поле могут изменять направление своего движения. Так, они могут вращаться по ларморовской окружности с определенной скоростью (поперечной скоростью), либо, в более сложном случае, центры ларморовских окружностей могут двигаться вдоль силовых линий.

В общем случае магнитные поля неоднородны, но в микромасштабах напряженность поля меняется очень мало.

Читайте также:  Почему люди изучали космос

Вакуумное рождение частиц

На основе фундаментальных соотношений неопределенности Гейзенберга построены современные квантово-полевые представления о физическом вакууме (ФВ), который не является пустым пространством. В квантовой электродинамике вакуум «мигает» появляющимися полями, «кипит» рождающимися на короткое время электрон-позитронными парами. Такие поля и частицы называются виртуальными. Прямым экспериментальным подтверждением существования ФВ являются такие тонкие физические эффекты, как поляризация вакуума, лэмбовский сдвиг энергетических уровней в атоме водорода, аномальный магнитный момент электрона, эффект Казимира и ускоренное космологическое расширение Вселенной. В ведущих лабораториях мира ученые пытаются вызвать вакуумное рождение частиц в сильных электромагнитных полях, основываясь на эффекте, качественно предсказанном еще в 30-х годах ХХ века.
Квантовая электродинамика описывает механизм рождения из вакуума электрон-позитронных пар следующим образом. В силу соотношения неопределенностей возможно кратковременное нарушение закона сохранения энергии и из вакуума может появиться виртуальная электрон-позитронная пара. Если внешнее электрическое поле способно произвести работу, то рождение пары из вакуума становится реальным процессом. Для этого поле должно быть порядка критического: Екр

3·10 16 В/см. В этих условиях вакуум становится неустойчивым и из него могут рождаться электрон-позитронные пары.

Для получения электрических полей с релятивистскими напряженностями используются мощные лазеры до 10 21 Вт/см 2 с высокой фокусировкой лучей и длительностью импульса порядка фемтосекунд, но пока не удается достичь Екр.

В соответствии с кинетическим уравнением (КУ), описывающим нестационарное вакуумное рождение частиц, которое было теоретически обосновано в 1997 г. физиками-теоретиками из разных стран, процессы соударения частиц и их ускорение зависит как от собственного электромагнитного поля, создаваемого частицами, так и внешнего создаваемого сильными полями. В результате КУ и уравнение Максвелла образуют замкнутую нелинейную систему интегродифференциальных уравнений, описывающих совместную эволюцию поля и частиц.

Это означает, что при некоторой плотности рожденных из вакуума частиц необходимо учитывать собственное внутреннее поле. Частицы из виртуального состояния перешли в реальный спектр времени, а это значит, реальным стало их общее электрон-позитронное поле. Это поле может стать равным или больше Екр. Поэтому после короткого импульса внешнего поля, вызвавшего рождение вакуумных частиц, система начнет эволюционировать самосогласованным образом даже после снятия этого поля.
Для достижения той же цели рождение из вакуума электрон-позитронных пар частиц предлагается использовать критическое магнитное поле. Оно было рассчитано А.А. Соколовым, Н.П. Клепиковым и И.М. Терновым в 1953 г., Ю. Швингером в 1954 г. которые получили следующий результат для потребной магнитной индукции так называемого Швингеровского поля

Известно, что затормозить или разогнать частицу гораздо труднее, чем заставить свернуть с пути, не меняя ее скорости. Сила Лоренца не совершает работы, она направлена перпендикулярно вектору скорости частицы, в связи с чем появляется возможность использования порогового эффекта по частоте для виртуальных частиц, рождаемых в вакууме, поскольку при критическом значении магнитной индукции энергия кратковременно появляющихся вакуумных электрон-позитронных пар m·с 2 перейдет в энергию вращения по ларморовской окружности.

Установка на основе лазерной ЭДС создает локальное магнитное поле по порядку Вкр = 10 13 Гс. Следовательно, в таком поле энергия кратковременно появившихся из вакуума частиц m·c 2 перейдет в кинетическую энергию вращения по ларморовской окружности. В режиме «замагничивания» движение виртуальных частиц навстречу друг другу с целью дальнейшей аннигиляции станет невозможным. Поскольку время действия магнитного поля на много порядков превышает время кратковременного появления виртуальных вакуумных пар, то режим «замагничивания» позволяет перевести частицы в реальный спектр времени, т.е. стать наблюдаемыми частицами. В свою очередь, наблюдаемые частицы вызовут эффекты поляризации вакуума, характеризуемые множественным процессом рождения из вакуума виртуальных электрон-позитронных пар, которые также подвергнутся «замагничиванию». Такой множественный и последовательный процесс рождения и «замагничивания» будет развиваться далее неудержимо и лавинообразно, что приведет к образованию плазменного сгустка.

Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов

Источник

Adblock
detector