Эволюция Солнца
Наше Солнце – типичный пример звезды, эволюционировавшей из звездной туманности 4,6 миллиарда лет назад. Но как выглядит рождение и развитие Солнца? Давайте внимательно изучим этапы солнечной эволюции.
Рождение и эволюция Солнца
Солнце и все ближайшие планеты начали свое существование в гигантском облаке молекулярного газа и пыли. Примерно 4,6 миллиарда лет назад это облако под воздействием внешних сил (гравитационного поля ближайших звезд или выброса энергии сверхновой) начало сжиматься. Во время сжатия внутренние силы газа и взаимодействие частиц пыли сформировали участки пространства с большей плотностью материи. Эти скопления позже дадут начало жизни бесчисленного количества звездных систем, в том числе и нашей.
В процессе сжатия скоплений из-за сил взаимодействия частиц наша будущая звезда начала вращаться. Центробежная сила создала большой шар материи в центре и плоский диск из пыли и газа ближе к краю новосозданной системы. Из центрального шара позже образуется Солнце, а из диска – планеты и астероиды. В течение первых ста тысяч лет после сжатия газового облака Солнце было коллапсирующей протозвездой. Это продолжалось пока температура и давление звезды не привели к воспламенению ее центральной части – ядра. С этого момента наша звезда превратилась в светило типа Т Тельца – очень активную звезду с сильным солнечным ветром. Со временем Солнце постепенно стабилизировалось и обрело свою теперешнюю форму. Так началась жизнь нашей ближайшей звезды, но это лишь первый этап эволюции Солнца.
Основной этап эволюции Солнца
Солнце в собственном развитии находится на основном этапе жизни, как и большинство звезд во Вселенной. В ее ядре ежесекундно 600 миллионов тонн водорода превращается в гелий и производится 4*1027 Ватт энергии. Этот процесс в ядре Солнца начался 4,6 миллиарда лет назад и не менялся с тех пор. Но запас гидрогена в звезде не безграничен: горючего светилу хватит еще на 7 миллиардов лет жизни.
Чем больше в звезде накапливается гелия, тем больше сгорает водорода. Следствием этого является больший выход энергии и увеличение яркости свечения. Вы едва ли заметите эти изменения в краткосрочной перспективе, но за последующий миллиард лет Солнце станет ярче на 10%. А это уже не обещает ничего хорошего Земле и другим планетам нашей системы.
Увеличение выхода энергии ядерного синтеза внутри Солнца за миллиард лет приведет к сильному парниковому эффекту на Земле, подобному тому, что происходит сейчас на Венере. Со временем влага, содержащаяся в атмосфере планеты, выветрится усиленным солнечным излучением.
Через 3,5 миллиарда лет Солнце будет ярче уже на 40%, чем сейчас. Температура на поверхности Земли увеличится настолько, что существование на ней жидкой воды станет невозможным. Океаны выкипят, и пар не задержится в атмосфере. Ледники растают, а снег останется лишь мифом давно забытых времен. Все условия для жизни на планете будут уничтожены безжалостным солнечным излучением. Наша голубая планета окончательно превратится в раскаленную высушенную Венеру.
Смерть звезды
Туманность Эскимос как наглядная картинка вероятной смерти нашего Солнца
Ничто не вечно. Это правило справедливо для всего: для нас, для нашего дома – Земли и для Солнца. Хоть конец Солнечной системы и не произойдет завтра и не выпадет на век кого-либо из живущих сегодня, когда-нибудь в далеком будущем звезда израсходует все топливо и отправится в последний путь, к забвению. Как же закончится развитие Солнца?
Примерно через 6 миллиардов лет Солнце израсходует все запасы водорода в ядре. После этого инертный гелий, накопившейся в ядре звезды, станет нестабильным и начнет коллапсировать под собственным весом. Вследствие этого ядро начнет нагреваться и уплотняться. Солнце начнет увеличивать свои размеры, пока не перейдет в стадию красного гиганта. Растущая звезда поглотит Меркурий, Венеру и, наверное, даже Землю. Но даже в случае, если наша планета уцелеет, жар от раскаленной звезды нагреет ее поверхность и превратит в настоящий ад для любой известной органической жизни.
Когда Солнце окончательно сгорит?
Последовательность ядерного синтеза внутри звезд
Смерть любой звезды, находящейся в стадии красного гиганта, не за горами. У Солнца будет еще достаточно температуры и давления, чтобы начать следующий этап ядерного синтеза: из гелия, который в этот раз будет топливом, синтезируется углерод. Этот этап займет около ста миллионов лет – до того момента, когда выгорит весь гелий. В конце оболочка станет нестабильной, и звезда начнет усиленно пульсировать. За весьма короткий промежуток времени эти пульсации выбросят в открытый космос большую часть атмосферы Солнца.
Когда от атмосферы недавнего гиганта ничего не останется, вместо большой и яркой звезды в пространстве повиснет белый карлик – небольшое, размером с Землю, светило из чистого карбона, по массе равное звезде. Алмаз размером с нашу планету будет еще долго светиться тепловым излучением, но этого недостаточно для ядерного синтеза. Со временем он остынет до температуры окружающей среды – пары градусов выше абсолютного нуля.
Так закончится жизнь нашего Солнца – одиноким алмазным постаментом.
Взорвется ли Солнце?
Крабовидная туманность — яркий пример остатка сверхновой
Нет ни одного реалистичного сценария, по которому Солнце бы взорвалось. Хоть нам она и кажется огромной, наша звезда невелика относительно невообразимо больших звезд, которыми полна Вселенная. Даже когда Солнце сжигает весь гидроген, она сначала растет, а потом уменьшается до размера небольшой планеты, медленно остывая триллионы лет.
Для того чтобы звезда взорвалась, ее масса должна значительно превышать массу Солнца. Если бы наша звезда была бы в десяток раз больше, тогда можно было бы говорить о взрыве. Сверхмассивные звезды после расходования водорода и гелия продолжают синтез более тяжелых элементов – вплоть до железа, синтез которого не сопровождается выделением энергии. Тогда внутреннее давление звезды, удерживавшее ее от воздействия гравитационных сил, исчезает, и звезда взрывается, выбрасывая в космос огромное количество энергии.
После взрыва от таких звезд остаются нейтронные звезды, которые быстро вращаются вокруг своей оси, или даже черные дыры.
Помните, масса Солнца слишком мала, чтобы когда-либо взорваться. И этого не произойдет, так что переживать не стоит.
Источник
Рождение звезд
Эволюция звезды начинается в гигантском молекулярном облаке, также называемом звёздной колыбелью, в котором в результате гравитационной неустойчивости первичная флуктуация плотности начинает разрастаться. Большая часть «пустого» пространства в галактике в действительности содержит от 0,1 до 1 молекулы на см³. Молекулярное облако же имеет плотность около миллиона молекул на см³. Масса такого облака превышает массу Солнца в 100 000—10 000 000 раз благодаря своему размеру: от 50 до 300 световых лет в поперечнике.
При коллапсе молекулярное облако разделяется на части, образуя всё более и более мелкие сгустки. Фрагменты с массой меньше
100 солнечных масс способны сформировать звезду. В таких формированиях газ нагревается по мере сжатия, вызванного высвобождением гравитационной потенциальной энергии, и облако становится протозвездой, трансформируясь во вращающийся сферический объект.
Звёзды на начальной стадии своего существования, как правило, скрыты от взгляда внутри плотного облака пыли и газа. Часто силуэты таких звёздообразующих коконов можно наблюдать на фоне яркого излучения окружающего газа. Такие образования получили название глобул Бока.
Очень малая доля протозвёзд не достигает достаточной для реакций термоядерного синтеза температуры. Такие звёзды получили название «коричневые карлики», их масса не превышает одной десятой солнечной. Такие звёзды быстро умирают, постепенно остывая за несколько сотен миллионов лет. В некоторых наиболее массивных протозвёздах температура из-за сильного сжатия может достигнуть 10 миллионов К, делая возможным синтез гелия из водорода. Такая звезда начинает светиться. Начало термоядерных реакций устанавливает гидростатическое равновесие, предотвращая ядро от дальнейшего гравитационного коллапса. Далее звезда может существовать в стабильном состоянии.
Начальная стадия эволюции звёзд
На диаграмме Герцшпрунга — Рассела появившаяся звезда занимает точку в правом верхнем углу: у неё большая светимость и низкая температура. Основное излучение происходит в инфракрасном диапазоне. До нас доходит излучение холодной пылевой оболочки. В процессе эволюции положение звезды на диаграмме будет меняться. Единственным источником энергии на этом этапе служит гравитационное сжатие. Поэтому звезда достаточно быстро перемещается параллельно оси ординат.
Температура поверхности не меняется, а радиус и светимость уменьшаются. Температура в центре звезды повышается, достигая величины, при которой начинаются реакции с лёгкими элементами: литием, бериллием, бором, которые быстро выгорают, но успевают замедлить сжатие. Трек поворачивается параллельно оси ординат, температура на поверхности звезды повышается, светимость остаётся практически постоянной. Наконец, в центре звезды начинаются реакции образования гелия из водорода (горение водорода). Звезда выходит на главную последовательность.
Продолжительность начальной стадии определяется массой звезды. Для звёзд типа Солнца она около 1 млн лет, для звезды массой 10 M ☉ примерно в 1000 раз меньше, а для звезды массой 0,1 M ☉ в тысячи раз больше.
Стадия главной последовательности
На стадии главной последовательности звезда светит за счёт выделения энергии в ядерных реакциях превращения водорода в гелий. Запас водорода обеспечивает светимость звезды массой 1M ☉ примерно в течение 10 10 лет. Звезды большей массы расходуют водород быстрее: так, звезда массой в 10 M ☉ израсходует водород менее, чем за 10 7 лет (светимость пропорциональна четвертой степени массы).
Звёзды малой массы
По мере выгорания водорода центральные области звезды сильно сжимаются.
Звёзды большой массы
После выхода на главную последовательность эволюция звезды большой массы (>1,5 M ☉ ) определяется условиями горения ядерного горючего в недрах звезды. На стадии главной последовательности это — горение водорода, но в отличие от звёзд малой массы в ядре доминируют реакции углеродно-азотного цикла. В этом цикле атомы C и N играют роль катализаторов. Скорость выделения энергии в реакциях такого цикла пропорциональна T 17 . Поэтому в ядре образуется конвективное ядро, окружённое зоной, в которой перенос энергии осуществляется излучением.
Светимость звёзд большой массы намного превышает светимость Солнца, и водород расходуется значительно быстрее. Связано это и с тем, что температура в центре таких звёзд тоже намного выше.
По мере уменьшения доли водорода в веществе конвективного ядра темп выделения энергии уменьшается. Но поскольку темп выделения определяется светимостью, ядро начинает сжиматься, и темп выделения энергии остаётся постоянным. Звезда же при этом расширяется и переходит в область красных гигантов.
Стадия зрелости звёзд
Звёзды малой массы
К моменту полного выгорания водорода в центре звезды малой масс образуется небольшое гелиевое ядро. В ядре плотность вещества и температура достигают значений 10 9 кг/м 3 и 10 8 K соответственно. Горение водорода происходит на поверхности ядра. Поскольку температура в ядре повышается, темп выгорания водорода увеличивается, увеличивается светимость. Лучистая зона постепенно исчезает. А из-за увеличения скорости конвективных потоков внешние слои звезды раздуваются. Размеры и светимость её возрастают — звезда превращается в красный гигант.
Звёзды большой массы
Когда водород у звезды большой массы полностью исчерпывается, в ядре начинает идти тройная гелиевая реакция и одновременно реакция образования кислорода (3He=>C и C+He=>О). В то же время на поверхности гелиевого ядра начинает гореть водород. Появляется первый слоевой источник.
Запас гелия исчерпывается очень быстро, так как в описанных реакциях в каждом элементарном акте выделяется сравнительно немного энергии. Картина повторяется, и в звезде появляются уже два слоевых источника, а в ядре начинается реакция C+C=>Mg.
Эволюционный трек при этом оказывается очень сложным. На диаграмме Герцшпрунга-Расселла звезда перемещается вдоль последовательности гигантов или (при очень большой массе в области сверхгигантов) периодически становится цефеидой.
Конечные стадии эволюции звёзд
Старые звёзды малой массы
У звезды малой массы, в конце концов, скорость конвективного потока на каком-то уровне достигает второй космической скорости, оболочка отрывается, и звезда превращается в белый карлик, окружённый планетарной туманностью.
Гибель звёзд большой массы
В конце эволюции звезда большой массы имеет очень сложное строение. В каждом слое свой химический состав, в нескольких слоевых источниках протекают ядерные реакции, а в центре образуется железное ядро.
Ядерные реакции с железом не протекают, так как они требуют затраты (а не выделения) энергии. Поэтому железное ядро быстро сжимается, температура и плотность в нем увеличиваются, достигая фантастических величин — температуры 10 9 K и плотности 10 9 кг/м3.
В этот момент начинаются два важнейших процесса, идущие в ядре одновременно и очень быстро (по-видимому, за минуты). Первый заключается в том, что при столкновениях ядер атомы железа распадаются на 14 атомов гелия, второй — в том, что электроны «вдавливаются» в протоны, образуя нейтроны. Оба процесса связаны с поглощением энергии, и температура в ядре (также и давление) мгновенно падает. Внешние слои звезды начинают падение к центру.
Падение внешних слоёв приводит к резкому повышению температуры в них. Начинают гореть водород, гелий, углерод. Это сопровождается мощным потоком нейтронов, который идёт из центрального ядра. В результате происходит мощнейший ядерный взрыв, сбрасывающий внешние слои звезды, уже содержащие все тяжёлые элементы, вплоть до калифорния. По современным воззрениям все атомы тяжёлых химических элементов (т.е. более тяжёлых, чем гелий) образовались во Вселенной именно во вспышках сверхновых. На месте взорвавшейся сверхновой остаётся в зависимости от массы взорвавшейся звезды либо нейтронная звезда, либо чёрная дыра.
Эволюционный трек звезды малой массы
Эволюционный трек звезды большой массы
Источник