Меню

Если космос говорит нет

Иногда Вселенная говорит «нет», чтобы защитить вас

Иногда Вселенная говорит вам «нет» потому, что знает — если получите то, чего желаете, это пойдет вам лишь во вред. Люди, с которыми вы мечтаете быть рядом, могут оказаться теми, кто подведет, как только вы подпустите их поближе. Теми, кто наглухо закроет ваше сердце для окружающих и заставит усомниться в самих себе.

Иногда Вселенная говорит вам «нет» потому, что хочет научить ценности терпения, научить ценить то, что другие воспринимают как должное, научить крепко стоять на своих двоих, чтобы вы могли в будущем позаботиться о других… Или о самих себе, когда тех, кто сейчас заботится о вас, не будет рядом.

Иногда Вселенная говорит вам «нет» потому, что знает — если бы она ответила «да», вы бы не стали настолько мудрым, сильным, стойким и волевым человеком. Вы не сможете реализовать весь своей потенциал, если в вашей жизни не будет определенных вещей, которые заставят преодолеть страхи, залечить раны и пройти испытания. Не станете человеком, распознающим хороших людей с первого взгляда и умеющим противостоять злым, когда они пересекают черту.

Иногда Вселенная говорит «нет» потому, что хочет подтолкнуть к тому, чтобы вы обратились к вере и познанию окружающего мира. Чтобы вы верили, даже когда не понимаете, почему все происходит именно это. Иногда вы получаете «нет» для того, чтобы получше присмотреться к самим себе, обдумать свою жизнь и принятые решения.

Иногда Вселенная говорит «нет» потому, что собирается одарить вас чем-то куда лучшим, чем то, о чем вы ее просите. Иногда «нет» оказывается слегка замаскированным «да». Иногда «нет» означает всего лишь «подожди немного», ведь вскоре произойдет нечто совершенно замечательное (даже если и не совсем то, чего вы ждали). Иногда «нет» означает не отказ, а просто «не сейчас». Но чем бы оно ни было, «нет» пойдет лишь на пользу, так как защищает от того, что могло бы причинить вред, или помогает получить куда больше, чем мы когда-либо просили.

Порой, говоря «нет», Вселенная тем самым говорит вам: «Я люблю тебя, и потому защищаю от того, что ты не можешь пока что увидеть».

Новое видео:

Источник

10 заблуждений о космосе, в которые стыдно верить

Эти мифы заботливо культивируются голливудскими фильмами и низкопробными фантастическими романами

Во многих фильмах можно увидеть такую картину: человек оказывается в открытом космосе без скафандра (либо с повреждённым скафандром) и быстро замерзает, превращаясь в хрупкую ледяную статую, трескающуюся от любого воздействия.

Что на самом деле. У космоса нет температуры. Он не холодный и не горячий — никакой Human Exposure to Vacuum : в вакууме нет конвекции и теплопроводности. Вообще, вакуум — хороший термоизолятор. Так что у астронавтов больше проблем с перегревом Staying Cool on the ISS , чем с переохлаждением.

И если вы окажетесь в космосе без скафандра в тени планеты, то, скорее всего, испытаете лёгкую прохладу из‑за испарения воды с поверхности кожи. Но до твёрдого состояния точно не заморозитесь.

z_k У астронавтов может быть проблема с перегревом, если они в скафандре и заняты физическим трудом, а это в среднем 300 Вт избыточной (та, что не в покое) энергии. Совсем другое дело открытые кожные покровы и вакуум с температурой -270 градусов. Вода будет переходить в пар мгновенно. Вряд ли это будет ощущением легкой прохлады.

2. Люди могут лопнуть в космосе

Бытует мнение, что в вакууме или в атмосфере с низким давлением, например на Марсе, человек может взорваться, как воздушный шарик. Глаза вылезут из орбит, сосуды полопаются, и незадачливый астронавт превратится в кровавое месиво.

Что на самом деле. Давление в вакууме отсутствует, и это может привести к тому, что ваши лёгкие лопнут The human body in space: distinguishing fact from fiction , если вы не выдохнете, прежде чем выпрыгнуть из корабля. В крови начнут появляться газовые пузырьки (это называется эбуллизм Ebullism at 1 million feet: ), на теле образуются отёки. Но кожа человека слишком упругая, и она не позволит вам взорваться.

Эксперименты Some cardiovascular responses in anesthetized dogs during repeated decompressions to a near‑vacuum на собаках показали, что в вакууме можно без последствий находиться до полутора минут, и после этого организм быстро восстановится. А вот более длительное пребывание летально из‑за гипоксии, то есть нехватки кислорода.

Читайте также:  Тату космос для мужчины

z_k Здесь все очень просто, проще некуда. Абсолютный вакуум — это всего лишь минус 1 атмосфера. Т.е. внутри тела 1 атмосфера, а за его пределами — вакуум. И все. А вот избыточное давление может быть огромным. Таким, какими технологиями мы на даннный момент обладаем. Водород, например, при 600 МПа — это уже жидкость. Т.е. это происходит при при давлении 6000 атмосфер. С твердыми телами могут быть достигуты и бОльшие значения.

3. У Луны есть тёмная сторона

Когда люди говорят «тёмная сторона Луны », то представляют себе мрачное место, куда никогда не падает солнечный свет. Наверное, именно поэтому там строят свои базы нацисты и десептиконы.

Что на самом деле. Все стороны Луны освещаются What Is the Dark Side of the Moon? Солнцем, и на ней есть день и ночь — правда, длятся они по две недели. Тем не менее у спутника Земли есть обратная сторона. Но из‑за того, что период вращения вокруг нашей планеты и вокруг собственной оси у Луны схожи, с Земли видно только одно её полушарие. А первые снимки другого были сделаны советской АМС «Луна‑3» ещё в 1959 году. И ничего особо таинственного там нет.

z_k Думаю, что немногие акцентировали на этом свое внимание. И мало, кто задумывался, почему «The Dark Side of the Moon»?

4. Чёрные дыры выглядят как воронки

Из‑за фильмов и картинок в интернете многие люди полагают, что чёрные дыры выглядят как вихрь, засасывающий всё вокруг себя. Или как воронка в раковине, куда стекает вода.

Что на самом деле. Впервые чёрную дыру показали реалистично в фильме «Интерстеллар», основываясь на теоретических моделях физика Кипа Торна. Уже позже NASA сделало первый её снимок с помощью системы из восьми радиотелескопов Event Horizon Telescope. В реальности чёрная дыра выглядит не как воронка, а как тёмная сфера, окружённая аккреционным диском из падающего на неё газа.

5. Солнце жёлтое

Если вы попросите кого‑нибудь нарисовать наше светило, то начинающий художник непременно возьмёт жёлтый карандаш. Взгляните на Солнце, и убедитесь, что оно имеет такой оттенок.

Что на самом деле. Желтоватым Солнце делает наша атмосфера. И если взглянуть на снимки из космоса, становится понятно, что его цвет — белый Color of Stars . Но мы так привыкли считать Солнце жёлтым, что даже учёные классифицируют похожие на него звёзды как «жёлтые карлики» просто для удобства.

z_k Здесь все понятно. Всем хоть раз приходилось покупать лампы освещения. Если они 2700 градусов (цветовая температура), то они желтого свечения, если

5000 градусов и выше , то — от белого до голубого. Зная, что температура поверхности Солнца составляет

6000 градусов, нетрудно догадаться о цвете нашего светила в космосе. Все остальные цветовые эффекты связаны с состоянием атмосферы Земли.

6. Первой в космос полетела собака Лайка

Кто первым полетел в космос? Конечно, Юрий Гагарин. А из братьев наших меньших? Собака по имени Лайка, это всем известно. Она была обычной дворнягой из приюта, отправившейся первой покорять космос.

Что на самом деле. Лайка действительно первой оказалась на орбите Земли. Но в космосе бывали живые существа и до неё. В феврале 1947 года американцы с помощью трофейной немецкой ракеты «Фау‑2» отправили в суборбитальный полёт несколько плодовых мушек (дрозофил), чтобы изучить на них воздействие космической радиации. Они долетели до высоты в 109 км, а границей космоса считается отметка в 80 км. Так что первыми его увидели мухи.

z_k Вопрос далеко не философский. Чего проще напихать в банку мух. И, не то же самое, отправить на орбиту собаку. Это две большие разницы.

7. NASA потратило миллиарды на пишущую в космосе ручку

Простыми ручками в космосе пользоваться нельзя, потому что чернила в стержне там не могут стекать вниз. И, согласно одной городской легенде NASA’s ‘Astronaut Pen’ , чтобы астронавты всё-таки смогли вести записи, NASA потратило 12 миллиардов долларов на изобретение специальной ручки. Она способна писать вверх ногами на любой поверхности при температуре от 0 до 300 °С. Советские же космонавты просто пользовались карандашами. Вот она, русская смекалка.

Читайте также:  Космос сценарий спортивного праздника

Что на самом деле. Поначалу и американцы, и русские пользовались в космосе карандашами, но это приводило к ряду проблем: частицы графита отслаивались и попадали в воздушные фильтры космических кораблей. А специальную ручку изобрёл Пол Фишер из Fisher Pen Company, и сделал он это независимо от NASA. Мужчина продал ведомству 400 штук по 2,95 доллара за каждую.

Наши космонавты тоже пользовались такими ручками. В своё время их закупали для работы на станции «Мир». Кстати, если хотите, можете тоже приобрести себе космическую ручку.

8. Через пояс астероидов трудно пролететь

Помните, как в «Звёздных войнах» Хан Соло мастерски пилотировал свой «Тысячелетний сокол», чтобы пробраться через пояс астероидов? Он умудрился обогнуть множество этих космических тел, да ещё и от погони имперских истребителей оторвался, хотя ежесекундно рисковал врезаться в парящие повсюду каменные глыбы.

Что на самом деле. В нашей Солнечной системе тоже есть свой пояс астероидов между орбитами Марса и Юпитера. Астрономы не уверены, сколько там каменных глыб, и называют приблизительное число в 10 миллионов. Но вы, даже не будучи крутым пилотом вроде Соло, легко пролетите сквозь них. Потому что среднее расстояние между астероидами в поясе — полтора миллиона километров. Это примерно в четыре раза больше, чем расстояние между Землёй и Луной.

Поэтому, чтобы в реальности врезаться в астероид, понадобится немалое старание и тщательные орбитальные манёвры. Вероятность не то что столкновения, но и просто незапланированного сближения космического корабля с каменной глыбой составляет New Horizons Crosses The Asteroid Belt менее чем один к миллиарду.

z_k Здесь все просто, важно только представлять массштабы космоса. Примерно та же ситуация в кольцах Сатурна.

9. Космические корабли летают по прямой

В фильмах космические аппараты легко перемещаются из одного места в другое, просто развернувшись прямо к цели и включив двигатели. Точно так же, как автомобили или корабли на Земле. А если космолёту надо сесть на планету, он просто устремляется в её атмосферу на полной скорости.

Что на самом деле. В реальности Ценный дар небесной механики космические аппараты двигаются от одной орбиты к другой по дугообразной гомановской траектории. И у них при этом отключены двигатели. Они включаются два раза, для разгона в начале и для торможения в конце, остальной путь корабль проделывает по инерции.

Если хотите самостоятельно поуправлять шаттлом и вживую увидеть движение по гомановской траектории, попробуйте поиграть в космический симулятор Kerbal Space Program. Он даёт наглядное представление об основах орбитальной механики.

Да, и ещё: корабли, собирающиеся приземлиться, сходят с орбиты, развернувшись двигателями по ходу движения, чтобы затормозить. В голливудских блокбастерах вроде «Прометея» такого не покажут, чтобы у зрителя не возникло вопроса, почему челноки летают задом наперёд.

z_k Здесь все сложно. И обычный человек вряд ли в состоянии представить себе, что лететь нужно не на планету, а в точку, где она появится в нужное время. Еще сложнее представить себе планетарную пращу, чтобы понять, как можно ускориться, не прикладывая к этому никаких усилий.

10. Летом тепло, потому что Земля ближе к Солнцу

Смена времён года вызвана меняющимся расстоянием от Земли до Солнца. Логично, правда? К сожалению, иногда так думают не только маленькие дети, но и вполне взрослые люди.

Что на самом деле. Орбита Земли не совсем круглая — она эллиптическая. Наша планета достигает перигелия (точки на орбите, ближайшей к Солнцу) в январе и афелия (самой дальней точки от Солнца) примерно через шесть месяцев. Если бы от этого зависела погода, у нас было бы лето в январе и зима в июле.

Сезоны меняются What causes the seasons? из‑за наклона оси вращения Земли относительно её орбитальной плоскости (эклиптики). Движение по орбите действительно вызывает температурные колебания в пределах 5 °С, но этого недостаточно, чтобы устроить смену времён года.

z_k Человек, знающий, что такое апогелий и перигелий может быть сбит с толку. Диссонанс возникает лишь тогда, когда мы понимаем, что времена года в южном и северном полушарии не зависят от удаленности Земли от нашего Светила. Но, вспомнив, что угол наклона оси вращения нашей планеты от оси эклиптики равен 23 градусам, мы все расставляем по местам.

Читайте также:  Космос игровая для детей

Источник

Бесконечен ли космос?

Вопрос о бесконечности космоса по праву считается одним из наиболее частых при обращении к этой тематике. Особенно, если мы говорим о вопросах, которые задают дети.

Вероятно, пространство действительно бесконечно, но, если говорить откровенно, пока наука не может дать однозначный ответ. Это большой и важный вопрос. Вся работа науки заключается в том, чтобы ставить вопросы и отвечать на них. Поскольку точного ответа пока нет, давайте рассмотрим то, что мы точно знаем о космосе.

Мы знаем, что пространство невероятно большое. Оно содержит планеты, звезды, системы и целые галактики. Раньше считали, что, смотря на небо, можно увидеть все пространство. Но это длилось до тех пор, пока на свет не появился Эдвин Хаббл. Именно за его заслуги один из лучших телескопов современности получил название «Хаббл».

Далекие, далекие звезды

Более 100 лет назад Хаббл смотрел на светлые точки ночного неба и обнаружил, что этими точками являются звезды. Но что еще важнее, он узнал, что они находятся далеко от нас. Эта идея буквально взорвала все принципы понимания пространства.

Звезды, которые мы видим на ночном небе, по большей мере относятся к нашей галактике – Млечному Пути. Солнечная система также является ее частью. Пучками света, которые изучал Хаббл, являлись другие галактики. И каждая из них точно так же, как и наша, наполнены множеством звезд. В космосе существуют более массивные и менее массивные галактики, нежели наша.

Эти исследования астронома позволили человечеству понять, что пространство гораздо больше, чем предполагалось.

Как заглянуть в бесконечность?

Пространство очень большое, но является ли оно бесконечным? Проблема в том, что мы не можем смотреть в бесконечность. Существуют пределы, дальше которых мы пока не можем заглянуть. Точно так же, как мы не можем выйти из своего дома и увидеть любой из городов в Австралии или Канаде.

Часть пространства, которую мы видим, называют наблюдаемой вселенной. Это объем света, который мы когда-либо сможем увидеть, поскольку при наблюдениях в космосе мы, преимущественно, изучаем свет и излучение.

Здесь мы подходим к интересной точке. Прямо сейчас мы уже можем измерить наблюдаемую вселенную.

Мы точно знаем, что расстояние от одного края ко второму составляет около 93 миллиардов световых лет. Это невообразимо крупное число, с которым тяжело работать даже профессиональным астрофизикам.

Для сравнения, это расстояние сопоставимо с 300,000 вращениями по орбите вокруг нашей галактики. При этом наше Солнце за всю свою жизнь сделает всего 20 таких оборотов.

Более того, мы находимся в центре нашей наблюдаемой вселенной. Представители какой-либо другой внеземной жизни в иной галактике будут иметь собственную наблюдаемую вселенную.

Согласно этой теории, все мы находились бы в условных «пузырях» пространства. Когда эти пузыри пересекались бы – мы могли бы увидеть ту часть пространства, которая также доступна для просмотра и внеземной цивилизации.

А что же насчет мест, которые находятся за пределами нашего пузыря? Разве может представитель внеземной цивилизации увидеть пустоту на краю пространства? Скорее всего нет. Он увидел бы существующую часть пространства, которая нам попросту не видна.

В теории пространство бесконечно

Почему большинство ученых считают, что пространство бесконечно? Вероятно, из-за его формы. Наша часть пространства и наблюдаемая вселенная имеют особую форму. И она форма плоская.

Это значит, что, если бы у каждого из нас был бы космический корабль, и мы отправились бы на нем по прямой линии, мы бы никогда не встретились. Этим объясняется плоская форма пространства, поскольку при любой другой его форме существовала бы вероятность возникновения ряда интересных вещей. Например, ракеты могли бы пересекаться на своем пути или приблизиться друг к другу, но никогда не пересекаться.

В действительности, все это лишь теории, которые базируются на современных законах физики и могут объяснить то, что мы можем наблюдать с текущим уровнем технологий. Вероятно, при появлении более продвинутого оборудования у нас будет возможность точнее сформулировать определение пространства и его масштабы.

Мы благодарны Вам за чтение наших материалов!
Подписывайтесь на канал Achernar и получайте больше интересных публикаций в своей ленте. Вы можете найти нас и на других площадках:

Источник

Adblock
detector