Как рождается энергия Солнца?
Есть одна причина, по которой Земля является единственным местом в Солнечной системе, где существует и процветает жизнь. Конечно, ученые подозревают, что под ледяной поверхностью Европы или Энцелада может тоже существовать микробная или даже водная форма жизни, также ее могут найти и в метановых озерах Титана. Но до поры до времени Земля остается единственным местом, которое обладает всеми необходимыми условиями для существования жизни.
Одна из причин этому заключается в том, что Земля расположена в потенциально обитаемой зоне вокруг Солнца (так называемой «зоне Златовласки»). Это означает, что она находится в нужном месте (не слишком далеко и не слишком близко), чтобы получать обильную энергию Солнца, в которую входит свет и тепло, необходимые для протекания химических реакций. Но как именно Солнце обеспечивает нас энергией? Какие этапы проходит энергия на пути к нам, на планету Земля?
Ответ начинается с того, что Солнце, как и все звезды, может вырабатывать энергию, поскольку является, по сути, массивным термоядерным реактором. Ученые считают, что оно началось с огромного облака газа и частиц (т. е. туманности), которое коллапсировало под силой собственной тяжести — это так называемая теория туманности. В этом процессе родился не только большой шар света в центре нашей Солнечной системы, но и водород, собранный в этом центре, начал синтезироваться с образованием солнечной энергии.
Технически известный как ядерный синтез, этот процесс высвобождает огромное количество энергии в виде тепла и света. Но на пути из центра Солнца к планете Земля эта энергия проходит через ряд важных этапов. В конце концов, все сводится к слоям Солнца, и роль каждого из них играет важную роль в процессе обеспечения нашей планеты важнейшей для жизни энергией.
Ядро Солнца — это область, которая простирается от центра до 20-25% радиуса светила. Именно здесь, в ядре, производится энергия, порождаемая преобразованием атомов водорода (H) в молекулы гелия (He). Это возможно благодаря огромному давлению и высокой температуре, присущим ядру, которые, по оценкам, эквивалентны 250 миллиардам атмосфер (25,33 триллиона кПа) и 15,7 миллионам градусов по Цельсию, соответственно.
Конечным результатом является слияние четырех протонов (молекул водорода) в одну альфа-частицу — два протона и два нейтрона, связанных между собой в частицу, идентичной ядру гелия. В этом процессе высвобождается два позитрона, а также два нейтрино (что меняет два протона на нейтроны) и энергия.
Ядро — единственная часть Солнца, которая производит значительное количество тепла в процессе синтеза. По сути, 99% энергии, произведенной Солнцем, содержится в пределах 24% радиуса Солнца. К 30% радиуса синтез почти целиком прекращается. Остаток Солнца подогревается энергией, которая передается из ядра через последовательные слои, в конечном счете достигая солнечной фотосферы и утекая в космос в виде солнечного света или кинетической энергии частиц.
Солнце высвобождает энергию, преобразуя массу в энергию со скоростью 4,26 миллиона метрических тонн в секунду, что эквивалентно 38,460 септиллионам ватт в секунду. Чтобы вам было понятнее, это эквивалентно взрывам 1 820 000 000 «царь-бомб» — самой мощной термоядерной бомбы в истории человечества.
Зона лучистого переноса
Эта зона находится сразу после ядра и простирается на 0,7 солнечного радиуса. В этом слое нет тепловой конвекции, но солнечная материя очень горячая и достаточно плотная, чтобы тепловое излучение запросто передавало интенсивное тепло из ядра наружу. В основном она включает ионы водорода и гелия, испускающие фотоны, которые проходят короткое расстояние и поглощаются другими ионами.
Конвективная зона
Это внешний слой Солнца, на долю которого приходится все, что выходит за рамки 70% внутреннего радиуса Солнца (и уходит примерно на 200 000 километров ниже поверхности). Здесь температура ниже, чем в радиационной зоне, и тяжелые атомы не полностью ионизированы. В результате радиационный перенос тепла проходит менее эффективно, и плотность плазмы достаточно низка, чтобы позволить появляться конвективным потокам.
Из-за этого поднимающиеся тепловые ячейки переносят большую часть тепла наружу к фотосфере Солнца. После тог, как эти ячейки поднимаются чуть ниже фотосферической поверхности, их материал охлаждается, а плотность увеличивается. Это приводит к тому, что они опускаются к основанию конвективной зоны снова — где забирают еще тепло и продолжают конвективный цикл.
На поверхности Солнца температура падает до примерно 5700 градусов по Цельсию. Турбулентная конвекция этого слоя Солнца также вызывает эффект, который вырабатывает магнитные северный и южный полюса по всей поверхности Солнца.
Именно в этом слое также появляются солнечные пятна, которые кажутся темными по сравнению с окружающей область. Эти пятна соответствуют концентрациям потоков магнитного поля, которые осуществляют конвекцию и приводят к падению температуры на поверхности по сравнению с окружающим материалом.
Фотосфера
Наконец, есть фотосфера, видимая поверхность Солнца. Именно здесь солнечный свет и тепло, излученные и поднятые на поверхность, распространяются в космос. Температуры в этом слое варьируются между 4500 и 6000 градусами. Поскольку верхняя часть фотосферы холоднее нижней, Солнце кажется ярче в центре и темнее по бокам: это явление известно как затемнение лимба.
Энергия, испускаемая фотосферой, распространяется в космосе и достигает атмосферы Земли и других планет Солнечной системы. Здесь, на Земле, верхний слой атмосферы (озоновый слой) фильтрует большую часть ультрафиолетового излучения Солнца, но пропускает часть на поверхность. Затем эта энергия поглощается воздухом и земной корой, согревает нашу планету и обеспечивает организмы источником энергии.
Солнце находится в центре биологических и химических процессов на Земле. Без него жизненный цикл растений и животных закончился бы, циркадные ритмы всех земных существ были бы сорваны, и жизнь на Земле перестала бы существовать. Важность Солнца была признана еще в доисторические времена, и многие культуры рассматривали его как божество (и зачастую помещали его в качестве главного божества в свои пантеоны).
Однако только в последние несколько столетий мы начали понимать процессы, которые питают Солнце. Благодаря постоянным исследованиям физиков, астрономов и биологов, мы теперь можем понять, как Солнце производит энергию и как она проходит через нашу Солнечную систему. Изучение известной Вселенной с ее разнообразием звездных систем и экзопланет также помогает нам провести аналогию с другими типами звезд.
Источник
Источник энергии Солнца
Для поддержания наблюдаемой светимости Солнца в течение длительного времени необходимы достаточные запасы его внутренней энергии и процессы, перерабатывающие эту энергию в излучение. На первый взгляд, энергия, выделяемая одним килограммом солнечного вещества в секунду, равная:
— величина небольшая, она примерно равна количеству теплоты, выделяемому одним килограммом гниющих листьев. Но химической энергии, запасенной в листьях, при таком энерговыделении едва хватает на год. Солнце, по современным данным, существует около 5 млрд, лет, причем его светимость за это время существенно не изменилась, следовательно, запасов внутренней энергии солнечного вещества должно хватить еще на миллиарды лет.
Зная светимость Солнца T= 4* 10 26 Вт и продолжительность его жизни t=5*10 9 лет = 1,5-10 17 секунд, легко найти энергию, выделенную Солнцем за этот промежуток времени: 4*10 26 Вт * 1,5-10 17 с = 6*10 43 Дж. Поделив эту энергию на массу Солнца, получим, что за это время жизни Солнца каждый килограмм его вещества выделил 3*10 13 Дж энергии.
Удельная теплота сгорания самого калорийного химического горючего — бензина — равна 4,6*10 7 Дж/кг, что значительно меньше внутренней энергии, выделяемой 1 кг солнечного вещества. Поэтому идея о свечении Солнца за счет химических реакций, высказанная в середине XIX в., была несостоятельной. Если бы это было так, то запасов энергии хватило бы только на 800 лет.
Примерно в то же время известный немецкий физик Г. Гельмгольц (1821 —1894 гг.) выдвинул гипотезу, которой пытался объяснить энерговыделение Солнца за счет его гравитационного сжатия; сжатие приводит к выделению тепла и к уменьшению запасов потенциальной энергии солнечного вещества. Однако простые подсчеты показывают, что при современной светимости Солнца запасов его потенциальной энергии хватило бы всего на несколько миллионов лет.
Единственным приемлемым источником энергии, поддерживающим излучение Солнца, может служить термоядерная энергия, выделяемая при образовании (синтезе) ядер атомов гелия, из ядер водорода.
Для протекания ядерных реакций необходима температура в несколько миллионов кельвинов, при которой участвующие в реакции частицы с одинаковым электрическим зарядом смогли бы получить достаточную энергию для взаимного сближения, преодоления электрических сил отталкивания и слияния в одно новое ядро. Ядерные реакции, протекающие при высоких температурах, получили название термоядерных реакций. Именно такие реакции протекают в недрах Солнца.
Расчеты показывают, что в результате термоядерных реакций синтеза из водорода массой 1 кг образуется гелий массой 0,99 кг и выделяется около 9*10 14 Дж энергии. Если сравнить эту величину с энергией (3*10 13 Дж), которую Солнце уже выделило каждым килограммом водорода за 5 млрд, лет своей жизни, то оставшегося в нем водорода должно было бы хватить почти на 150 млрд. лет. Но так как реакции синтеза протекают только в ядре Солнца, содержащем примерно десятую долю всей его массы, то запасов ядерного горючего хватит еще на 10 млрд. лет.
Источник
Энергия солнца — альтернативный источник энергии, мощный и вечный!
Согласно научным выводам, земля перехватывает много солнечной энергии, что составляет 173 триллиона тераватт. Это буквально на десять тысяч больше энергии, чем население всего мира . Это подтверждает тот факт, что солнце является самым изобильным источником энергии на всем земном шаре и что оно может стать одним из самых надежных источников энергии.
Традиционно энергетические потребности в мире удовлетворяются ископаемыми видами топлива, такими как нефть, природный газ и уголь. Однако эти источники энергии имеют два основных отрицательных воздействия:
Они играют большую роль в глобальном потеплении и загрязнении кислотными дождями , что отрицательно сказывается на многих животных, растениях и людях в окружающей среде .
Немногие страны имеют полный доступ к энергоресурсам на ископаемом топливе, что может привести к глобальной политической и экономической нестабильности.
Лучшей альтернативой является солнечная энергия, которая является возобновляемым ресурсом, то есть она не станет недоступной. Он обеспечивает неограниченное, постоянное снабжение через время. Солнечная энергия также является зеленым источником энергии, поскольку она не выделяет загрязняющие вещества в процессе производства энергии.
Итак, что такое солнечная энергия?
Солнечная энергия — это энергия, вырабатываемая солнцем в виде тепла и света. Это один из самых возобновляемых и доступных источников энергии на планете Земля. Тот факт, что он доступен в большом количестве и свободен и никому не принадлежит, делает его одним из самых важных из нетрадиционных источников энергии. Солнечная энергия использовалась людьми с древних времен, используя простые увеличительные стекла, чтобы сконцентрировать свет солнца в лучах настолько жарко, что они могли бы загореться.
В основном, солнечная энергия может быть использована для преобразования ее в тепловую энергию или может быть преобразована в электричество. Солнечная энергия — это энергия, запряженная солнцем. Он используется двумя основными способами:
- Через производство электроэнергии
Этот метод использует солнечные фотоэлектрические (PV) устройства или солнечные элементы, которые преобразуют энергию солнца в электричество. Фотоэлектрические устройства производят электричество прямо от солнечного света через электронный процесс, который естественно встречается в конкретных типах материалов, известных как полупроводники.
Электроны, содержащиеся в этих материалах, пропускаются солнечными лучами, что стимулируется движением по электронной цепи, передачей мощности в сетку или прямым питанием электрических устройств. Эта форма энергии может использоваться для питания солнечных часов, калькуляторов или сигналов трафика. Они часто используются в местах, которые не подключены к электрической сети.
Солнечные коллекторы
Солнечный тепловой коллектор использует тепло, поглощая солнечные лучи. Этот метод использует энергию солнца для нагрева воды (солнечные панели горячей воды) для домашнего использования, такие как водонагреватели, гидромассажные ванны и бассейны. На концентрированных солнечных электростанциях используются более сложные сборщики для производства электроэнергии путем нагрева жидкости для включения турбины, подключенной к генератору. Простые сборщики обычно используются в коммерческих и жилых зданиях для обогрева помещений.
Солнечная энергия, превращенная в электричество, может быть мгновенно использована для питания огней или многих других устройств. Более того, он может храниться в батареях для будущего использования. Солнечные элементы обычно генерируют электричество постоянного тока (DC). Однако его можно преобразовать в переменный ток (переменный ток) с помощью устройства, известного как инвертор. Солнечная энергия, преобразованная в тепловую энергию с целью нагрева воды, может быть использована мгновенно или храниться в виде горячей воды в резервуарах, которые будут использоваться позже.
Солнечную энергию можно широко классифицировать как активную или пассивную солнечную энергию в зависимости от того, как они захватываются и используются. В активной солнечной энергии специальное солнечное отопительное оборудование используется для преобразования солнечной энергии в тепловую энергию, тогда как в пассивной солнечной энергии механического оборудования нет. Активная солнечная энергия включает использование механического оборудования, такого как фотогальванические элементы, солнечные тепловые коллекторы или насосы и вентиляторы для улавливания солнечной энергии .
Пассивные солнечные технологии превращают солнечную энергию в тепловую энергию без использования активных механических систем. Это главным образом практика использования окон, стен, деревьев, размещения зданий и других простых методов для захвата или отклонения солнца для использования. Пассивное солнечное отопление — отличный способ сохранить энергию и максимизировать ее использование. Примером пассивного солнечного нагрева является то, что происходит с вашим автомобилем в жаркий летний день.
Источник