Меню

Эллиптическая орбита второе солнце

Законы Кеплера

В мире атомов и элементарных частиц гравитационные силы пренебрежимо малы по сравнению с другими видами силового взаимодействия между частицами. Очень непросто наблюдать гравитационное взаимодействие и между различными окружающими нас телами, даже если их массы составляют многие тысячи килограмм. Однако именно гравитация определяет поведение «больших» объектов, таких, как планеты, кометы и звезды, именно гравитация удерживает всех нас на Земле.

Гравитация управляет движением планет Солнечной системы. Без нее планеты, составляющие Солнечную систему, разбежались бы в разные стороны и потерялись в безбрежных просторах мирового пространства.

Закономерности движения планет с давних пор привлекали внимание людей. Изучение движения планет и строения Солнечной системы и привело к созданию теории гравитации – открытию закона всемирного тяготения.

С точки зрения земного наблюдателя планеты движутся по весьма сложным траекториям (рис. 1.24.1). Первая попытка создания модели Вселенной была предпринята Птолемеем (

140 г.). В центре мироздания Птолемей поместил Землю, вокруг которой по большим и малым кругам, как в хороводе, двигались планеты и звезды.

Рисунок 1.24.1. Условное изображение наблюдаемого движения Марса на фоне неподвижных звезд

Геоцентрическая система Птолемея продержалась более 14 столетий и только в середине XVI века была заменена гелиоцентрической системой Коперника. В системе Коперника траектории планет оказались более простыми. Немецкий астроном Иоганн Кеплер в начале XVII века на основе системы Коперника сформулировал три эмпирических закона движения планет Солнечной системы. Кеплер использовал результаты наблюдений за движением планет датского астронома Тихо Браге.

Первый закон Кеплера (1609 г.):

Все планеты движутся по эллиптическим орбитам, в одном из фокусов которых находится Солнце.

На рис. 1.24.2 показана эллиптическая орбита планеты, масса которой много меньше массы Солнца. Солнце находится в одном из фокусов эллипса. Ближайшая к Солнцу точка P траектории называется перигелием, точка A, наиболее удаленная от Солнца – афелием. Расстояние между афелием и перигелием – большая ось эллипса.

Рисунок 1.24.2. Эллиптическая орбита планеты массой m –11 Н·м 2 /кг 2 – гравитационная постоянная. Ньютон первый высказал мысль о том, что гравитационные силы определяют не только движение планет Солнечной системы; они действуют между любыми телами Вселенной. В частности, уже говорилось, что сила тяжести, действующая на тела вблизи поверхности Земли, имеет гравитационную природу.

Для круговых орбит первый и второй закон Кеплера выполняются автоматически, а третий закон утверждает, что T 2

R 3 , где Т – период обращения, R – радиус орбиты. Отсюда можно получить зависимость гравитационной силы от расстояния. При движении планеты по круговой траектории на нее действует сила, которая возникает за счет гравитационного взаимодействия планеты и Солнца:

Свойство консервативности гравитационных сил позволяет ввести понятие потенциальной энергии. Для сил всемирного тяготения удобно потенциальную энергию отсчитывать от бесконечно удаленной точки.

Потенциальная энергия тела массы m, находящегося на расстоянии r от неподвижного тела массы M, равна работе гравитационных сил при перемещении массы m из данной точки в бесконечность.

Математическая процедура вычисления потенциальной энергии тела в гравитационном поле состоит в суммировании работ на малых перемещениях (рис. 1.24.5).

Рисунок 1.24.5. Вычисление потенциальной энергии тела в гравитационном поле

Закон всемирного тяготения применим не только к точеным массам, но и к сферически симметричным телам. Работа гравитационной силы на малом перемещении есть:

Полная работа при перемещении тела массой m из начального положения в бесконечность находится суммированием работ ΔAi на малых перемещениях:

В пределе при Δri → 0 эта сумма переходит в интеграл. В результате вычислений для потенциальной энергии получается выражение

Знак «минус» указывает на то, что гравитационные силы являются силами притяжения.

Если тело находится в гравитационном поле на некотором расстоянии r от центра тяготения и имеет некоторую скорость υ, его полная механическая энергия равна

В соответствии с законом сохранения энергии полная энергия тела в гравитационном поле остается неизменной.

Полная энергия может быть положительной и отрицательной, а также равняться нулю. Знак полной энергии определяет характер движения небесного тела (рис. 1.24.6).

При E = E1 rmax. В этом случае небесное тело движется по эллиптической орбите (планеты Солнечной системы, кометы).

Рисунок 1.24.6. Диаграмма энергий тела массой m в гравитационном поле, создаваемом сферически симметричным телом массой M и радиусом R

При E = E2 = 0 тело может удалиться на бесконечность. Скорость тела на бесконечности будет равна нулю. Тело движется по параболической траектории.

При E = E3 > 0 движение происходит по гиперболической траектории. Тело удаляется на бесконечность, имея запас кинетической энергии.

Законы Кеплера применимы не только к движению планет и других небесных тел в Солнечной системе, но и к движению искусственных спутников Земли и космических кораблей. В этом случае центром тяготения является Земля.

Первой космической скоростью называется скорость движения спутника по круговой орбите вблизи поверхности Земли.

Эту скорость необходимо набрать, чтобы преодолеть притяжение Земли и вывести тело (например, спутник) на орбиту Земли.

Второй космической скоростью называется минимальная скорость, которую нужно сообщить космическому кораблю у поверхности Земли, чтобы он, преодолев земное притяжение, превратился в искусственный спутник Солнца (искусственная планета). При этом корабль будет удаляться от Земли по параболической траектории.

Рис. 1.24.7 иллюстрирует космические скорости. Если скорость космического корабля равна υ1 = 7.9·10 3 м/с и направлена параллельно поверхности Земли, то корабль будет двигаться по круговой орбите на небольшой высоте над Землей. При начальных скоростях, превышающих υ1, но меньших υ2 = 11,2·10 3 м/с, орбита корабля будет эллиптической. При начальной скорости υ2 корабль будет двигаться по параболе, а при еще большей начальной скорости – по гиперболе.

Источник

У Солнца могла быть звезда-близнец в прошлом. Где она сейчас и как появилась?

У нашего Солнца был компаньон, и во внешней Солнечной системе могло быть много неоткрытых карликовых планет. Об этом говорится в новом исследовании ученых. Опубликованная в Astrophysical Journal Letters статья доктора Ави Лоеба, профессора наук Гарварда и студента Амира Сираджа идет вразрез с доминирующей теорией «одинокой звезды» в происхождении нашей Солнечной системы. Рассказываем, как к такому выводу пришли ученые? На какие вопросы о нашей Солнечной системе это открытие дает вопросы? Что еще скрывает наша Солнечная система? Как вообще образуются системы с двумя звездами и где «второе Солнце» сейчас?

О чем говорит новая теория?

Астрономы из Гарвардского университета предположили, что Солнце могло быть частью двойной системы — где две звезды вращаются вокруг друг друга — в годы формирования самой Солнечной системы.

Новая теория ученых утверждает, что если бы существовала двойная звездная система, она была бы лучше оснащена для притяжения удаленных объектов своей гравитацией. Проще говоря, такое количество объектов и на таком большом расстоянии от Солнца намекает на то, что у нашей звезды был компаньон-помощник.

Радикально звучащая теория о том, что Солнечная система, возможно, когда-то была двойной звездной системой, состоящей из двух звезд, вращающихся вокруг общей точки в космосе, тем не менее, не должна вызывать удивления, подчеркивают ученые. «Большинство звезд, похожих на Солнце, рождаются с двойными спутниками», — заявил автор исследования.

Как образуются звезды?

Звезды рождаются в облаках пыли и разбросаны по большинству галактик. Широко известный пример пылевого облака — туманность Ориона. Турбулентность глубоко внутри этих облаков порождает узлы с массой, достаточной для того, чтобы газ и пыль могли начать схлопываться под действием собственного гравитационного притяжения. Когда облако схлопывается, материал в центре начинает нагреваться. Именно это горячее ядро ​​в центре коллапсирующего облака — протозвезда — однажды станет звездой. Трехмерные компьютерные модели звездообразования предсказывают, что вращающиеся облака коллапсирующего газа и пыли могут распасться на две или три капли; это объяснило бы, почему большинство звезд в Млечном пути спарены или расположены в группах из нескольких звезд.

Что такое двойные звездные системы?

Вы знаете, что планеты вращаются вокруг звезд точно так же, как наша планета Земля вращается вокруг Солнца. Но знаете ли вы, что звезды также могут вращаться вокруг других звезд? По оценкам ученых, более 80% световых точек на ночном небе на самом деле являются множественными звездными системами. Эти системы могут иметь две, три, четыре или даже больше звезд.

Есть данные, что в звездной системе Джабба в созвездии Скорпиона насчитывается аж семь звезд! Это означает, что наша Солнечная система, которая сейчас всего лишь с одной-единственной звездой, на самом деле довольно редка.

На этой диаграмме показано, как две звезды в двойной системе имеют эллиптическую орбиту (в некоторых случаях она может быть почти круговой). У них есть общий фокус, который является центром масс или барицентром системы и вращается вокруг этой точки. Радиус-вектор, соединяющий две звезды, всегда пересекает барицентр.

Двоичные системы могут иметь очень эллиптические орбиты, как показано выше. В этих случаях эксцентриситет e ближе к 1. Если e близко к 0, орбиты будут более круговыми

Большинство из этих множественных звездных систем являются бинарными звездами; префикс bi- имеет латинское происхождение и означает два. Бинарные звезды — это две звезды, которые имеют общую гравитационную связь и одновременно вращаются вокруг своего общего центра масс. Центр масс объекта (или объектов) является его точкой балансировки. Представьте, что вы можете прикрепить две звезды к концам длинного шеста. Центр масс — это точка, в которой вы можете удерживать этот шест на пальце, чтобы он не наклонялся в ту или иную сторону.

В двойной звездной системе две звезды вращаются вокруг своего общего центра масс.

Двойные звезды классифицируются как «широкие» или «близкие». В широких двойных системах, как следует из названия, орбиты двух звезд держат их далеко друг от друга. Звезды движутся по жизненному пути раздельно и мало влияют друг на друга. Однако близкие двойные системы находятся достаточно близко друг к другу, поэтому гравитационное притяжение одной звезды может деформировать и иногда поглотить другую звезду. Поскольку звезды классифицируются на основе их массы, этот перенос вещества от одной звезды к другой может полностью изменить их жизненный путь.

Облако Оорта — дом комет

Облако Оорта — самый дальний регион нашей Солнечной системы. Считается, что даже ближайшие объекты в Облаке Оорта во много раз дальше от Солнца, чем внешние границы пояса Койпера.

В отличие от орбит планет и пояса Койпера, которые лежат в основном в одном плоском диске вокруг Солнца, Облако Оорта считается гигантской сферической оболочкой, окружающей остальную часть Солнечной системы. Он похож на большой толстостенный пузырь из ледяных кусков космического мусора размером с горы, а иногда и больше. Облако Оорта может содержать миллиарды или даже триллионы объектов.

Поскольку орбиты долгопериодических комет очень длинные, ученые подозревают, что облако Оорта является источником большинства этих комет. Например, комета C/2013 A1 Siding Spring, которая очень близко прошла мимо Марса в 2014 году, не вернется во внутренние области Солнечной системы в течение примерно 740 000 лет.

Расстояние от Солнца до Облака Оорта настолько огромно, что полезно описывать его не в более распространенных единицах измерения миль или километров, а в астрономических единицах. Одна астрономическая единица (или а.е.) —это расстояние между Землей и Солнцем. Эллиптическая орбита Плутона переносит его на расстояние 30 а.е. от Солнца и 50 а.е. Однако считается, что внутренний край Облака Оорта находится на расстоянии от 2 000 до 5 000 а.е. от Солнца. Внешний край может находиться на расстоянии 10 000 или даже 100 000 а.е. от Солнца — это на четверть или половину расстояния между Солнцем и ближайшей соседней звездой.

Хотя считается, что долгопериодические кометы, наблюдаемые среди планет, происходят из Облака Оорта, в самом далеком его участке не наблюдалось ни одного объекта, поэтому пока это теоретическая концепция. Но это остается наиболее широко распространенным объяснением происхождения долгопериодических комет.

Где сейчас это «второе Солнце»?

Итак, если бы у Солнца был двойной спутник, где он? Сейчас его явно нет; такая звезда, как Солнце, на расстоянии 200 млрд км, будет такой же яркой, как Луна в первой четверти.

Если он когда-либо существовал, его давно нет. Большинство звезд рождаются в звездных скоплениях, группах из сотен или даже тысяч звезд, поэтому нет ничего удивительного в том, что Солнце родилось в одном из скоплений 4,6 млрд лет назад. В таком переполненном пространстве очень вероятны встречи между звездами. Если даже красный карлик с массой в одну десятую от массы Солнца пройдет примерно 300 млрд км, он может нарушить работу системы, выбросив бывшего спутника Солнца. Вполне вероятно, что Солнце сохранило бы спутника только около 100 млн лет, прежде чем потерять его, — короткий период по сравнению с нынешним возрастом звезды.

Примеры солнечных систем с двумя звездами

Эта диаграмма сравнивает нашу солнечную систему с Кеплер-47, двойной звездной системой, состоящей из двух планет, одна из которых вращается в так называемой обитаемой зоне. Это золотая середина планетной системы, где жидкая вода может существовать на поверхности планеты.

В отличие от нашей Солнечной системы, Кеплер-47 является домом для двух звезд. Одна звезда похожа на Солнце по размеру, но только на 84% ярче. Вторая звезда — миниатюрная, ее размер составляет всего треть от размера Солнца, а ее яркость составляет менее одного процента. Поскольку звезды меньше нашего Солнца, обитаемая зона системы находится ближе.

Обитаемая зона системы имеет форму кольца с центром на большой звезде. Поскольку главная звезда обращается вокруг центра масс двух звезд каждые 7,5 дней, кольцо обитаемой зоны перемещается.

Рендеринг этого художника показывает, что планета удобно вращается в пределах обитаемой зоны подобно тому, как Земля вращается вокруг Солнца. Один год на орбите спутника Kepler-47c составляет 303 дня. «Кеплер-47c» не является миром, благоприятным для жизни, но считается газовым гигантом, немного больше Нептуна, где может существовать атмосфера из толстых ярких облаков водяного пара.

Открытие демонстрирует разнообразие планетных систем в нашей галактике и предоставляет больше возможностей для поиска жизни, какой мы ее знаем.

Кроме того, исследователи, работающие с данными со спутника NASA Transiting Exoplanet Survey Satellite (TESS), обнаружили первую околоземную планету миссии, мир, вращающийся вокруг двух звезд. Планета, получившая название TOI 1338 b, примерно в 6,9 раз больше Земли или находится между размерами Нептуна и Сатурна.

Он находится в системе на расстоянии 1 300 световых лет в созвездии Живописца. Звезды в системе образуют затменную двойную систему, которая возникает, когда звездные спутники кружат друг над другом в нашей плоскости обзора. Один примерно на 10% массивнее нашего Солнца, а другой холоднее, тусклее и составляет всего одну треть от массы Солнца.

Транзиты TOI 1338 b нерегулярны, от 93 до 95 дней, и различаются по глубине и продолжительности из-за орбитального движения его звезд. TESS видит только транзиты, пересекающие большую звезду — транзиты меньшей звезды слишком слабые, чтобы их можно было обнаружить. Его орбита стабильна как минимум следующие 10 млн лет. Однако угол орбиты к нам меняется настолько, что транзит планеты прекратится после ноября 2023 года и возобновится через восемь лет.

Где доказательства «второго Солнца»?

В Облаке Оорта, этой сферической оболочке из ледяных объектов во внешней Солнечной системе. Считается, что он состоит из обломков, оставшихся от образования Солнечной системы, но кажется, что объектов слишком много. Только когда «второе Солнце» вставляется в модель этой новой статьи, облако Оорта становится таким плотным, как мы наблюдаем его сегодня.

Двоичные системы намного более эффективны при захвате объектов, чем одиночные звезды. Если бы Облако Оорта сформировалось так, как наблюдали, это означало бы, что у Солнца действительно был спутник с такой же массой, который был потерян до того, как оно покинуло свое скопление, заявляют ученые.

Это важно, потому что такие объекты в Облаке Оорта, как кометы, могли принести воду на нашу планету. Объекты во внешнем Облаке Оорта, возможно, играли важную роль в истории Земли, например, доставляли воду на планету и привели к вымиранию динозавров.

Ученые также указывают, что двойной спутник Солнца также решает некоторые другие проблемы в нашей Солнечной системе. Например, ледяные тела, вращающиеся вокруг Нептуна, входят в разные группы. Один называется рассеянным диском и состоит из объектов, которые имеют сильно эллиптические и наклонные орбиты, вероятно, выброшенные в эту область пространства в результате столкновения с газовыми гигантами, в первую очередь с Нептуном. Другой пример — внешнее Облако Оорта, огромный сферический объем пространства примерно в триллионе километров от Солнца. Внешних объектов Облака Оорта примерно в 10 раз больше, чем в рассеянном диске, но согласно большинству гипотез о формировании Солнечной системы это число должно быть несколько ниже. В статье астрономы обнаруживают, что двоичная идея естественным образом дает правильное соотношение

Однако что действительно захватывающе в теории «второго Солнца», так это ее последствия для «Девятой планеты».

Есть ли во внешней Солнечной системе до сих пор необнаруженная «Девятая планета»?

Что такое «Девятая планета»? Предполагается, что «Девятая планета» является суперземлей — планетой примерно в 5–15 раз больше Земли, что впервые было высказано в 2016 году.

«Планета Девять» считается маловероятной, поскольку Солнечной системе будет трудно собрать достаточно материала на таком расстоянии от Солнца, чтобы сформировать планету размером с Землю. Это привело астрономов к выдвижению еще более безумно звучащих теорий о том, чем, собственно, может быть наблюдаемый «эффект Девятой планеты».

Одна из других теорий Леба и Сираджа состоит в том, что в нашей солнечной системе существует изначальная черная дыра. Другая — это новая теория «второго Солнца».

Что интересно, последний предсказывает, что во внешней Солнечной системе может скрываться не одна дополнительная планета.

Помимо увеличения шансов на захват большой планеты, «второе Солнце» теоретически должно было помочь перенести больше объектов во внешние области Солнечной системы. Новая модель ученых предсказывает, что должно быть больше объектов с орбитальной ориентацией, аналогичной «Девятой планете».

Как можно проверить теорию «второго Солнца»?

Исследователи предполагают, что обсерватория Vera C Rubin (VRO) в разреженном горном воздухе на пике Серро Пачон в чилийской долине Эльки, чей десятилетний обзор неба должен быть «первым светом» в 2021 году, сможет либо исключить, либо подтвердить «Девятую планету» как черную дыру в течение года.

«Если VRO подтвердит существование «Девятой планеты» и захваченное происхождение, а также обнаружит популяцию захваченных аналогичным образом карликовых планет, то бинарная модель будет иметь преимущество над историей одиноких звезд, которая давно предполагалась», — подтверждают ученые.

В рамках десятилетнего обзора неба, проводимого VRO «Legacy Survey of Space and Time» (LSST), каждые три ночи будет сниматься все ночное небо Южного полушария, причем каждое изображение покрывает площадь, в 40 раз превышающую размер полной Луны.

Широкоугольная обсерватория будет предупреждать астрономов о событиях в реальном времени и создавать огромный архив данных. Ожидается, что это значительно расширит познания астрономов о космосе. Если за пределами Солнечной системы скрывается группа карликовых планет — и даже сама «Девятая планета», VRO может их найти.

Это сделало бы теорию «второго Солнца» более верной, утверждают исследователи.

Источник

Читайте также:  Нравится солнцу его работа

Космос, солнце и луна © 2023
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.

Adblock
detector