Космос. Иллюстрированная история астрономии и космологии
Скачать книгу
О книге «Космос. Иллюстрированная история астрономии и космологии»
Подобно нашим далеким предкам, мы до сих пор смотрим на звезды в надежде понять, как возникла и развивается Вселенная, исчезнет ли она, каково в ней место и предназначение человечества. Британский историк науки Джон Норт (1934–2008) написал книгу, которая позволяет узнать все об истории астрономии и космологии – от наблюдений первобытных людей до открытий недавнего времени. Норт проводит прямую линию от работы великих астрономов прошлого до достижений современной науки, дополняя свой рассказ прекрасными познавательными иллюстрациями. «Космос» – книга энциклопедического охвата, написанная с подлинной страстью, необходимое чтение для всех, кто задумывался о загадках мироздания. Джон Норт был заслуженным профессором Гронингенского университета (Нидерланды). Автор многих книг, включая «Мерило Вселенной: История современной космологии», «Секрет посла: Гольбейн и мир Возрождения», «Часовщик Бога: Ричард Уоллингфордский и изобретение времени» и других.
Произведение было опубликовано в 2008 году издательством Нло. На нашем сайте можно скачать книгу «Космос. Иллюстрированная история астрономии и космологии» в формате fb2, rtf, epub, pdf, txt или читать онлайн. Здесь так же можно перед прочтением обратиться к отзывам читателей, уже знакомых с книгой, и узнать их мнение. В интернет-магазине нашего партнера вы можете купить и прочитать книгу в бумажном варианте.
Источник
Космос. Иллюстрированная история астрономии и космологии
Издательство «Новое литературное обозрение» представляет книгу Джона Норта «Космос. Иллюстрированная история астрономии и космологии» (перевод Константина Иванова).
Подобно нашим далеким предкам, мы до сих пор смотрим на звезды в надежде понять, как возникла и развивается Вселенная, исчезнет ли она, каково в ней место и предназначение человечества. Британский историк науки Джон Норт (1934–2008) написал книгу, которая позволяет узнать всё об истории астрономии и космологии — от наблюдений первобытных людей до открытий недавнего времени. Норт проводит прямую линию от работы великих астрономов прошлого до достижений современной науки, дополняя свой рассказ прекрасными познавательными иллюстрациями. «Космос» — книга энциклопедического охвата, написанная с подлинной страстью, необходимое чтение для всех, кто задумывался о загадках мироздания.
Джон Норт был заслуженным профессором Гронингенского университета (Нидерланды). Автор многих книг, включая «Мерило Вселенной: История современной космологии», «Секрет посла: Гольбейн и мир Возрождения», «Часовщик Бога: Ричард Уоллингфордский и изобретение времени» и других.
Предлагаемый отрывок взят из главы книги, посвященной обсерваториям мусульманского мира.
Сохранились сведения о том, что Шараф ад-Даула, правивший в Багдаде с 982 по 989 г., предписал астроному Абу Сахл ал-Кухи наблюдать за планетами, снабдив его крупными инструментами и куполообразной обсерваторией, возведенной в дворцовом саду. В куполе, как говорили, было проделано отверстие, проникая сквозь которое, солнечные лучи падали на поверхность радиусом 12,5 метра. (Эта поверхность, как полагали раньше, имела форму полусферы, но представляется более вероятным, что это была правильная круговая дуга, ориентированная по меридиану. К сожалению, всё это пришло в забвение после смерти вышеупомянутого покровителя.) Буидский правитель ал-Рея — города, располагавшегося в Иране, к востоку от современного Тегерана, — субсидировал постройку некоего инструмента с очень большой шкалой, с помощью которого, начиная с 950 г., производились наблюдения Солнца. Считается, будто наблюдения, произведенные ас-Суфи в Исфахане, легли в основу звездного каталога, однако не исключено, что он просто ввел прецессионную поправку для устаревших значений звездных долгот. Он работал под патронатом двух или даже трех представителей Буидской династии. Наиболее весомо царственное покровительство этой династии проявило себя не в Исфахане, а в ал-Рее во времена Фахра ад-Даула (ум. в 997), оказывавшего всемерную поддержку Абу Махмуду ал-Худжанди — прекрасному математику и в высшей степени прагматичному астроному.
Имя Фахра ад-Даула интересно тем, что его носят инструменты особого типа, один из которых построили для ал-Худжанди. Это был меридианный секстант колоссальных размеров с радиусом в 80 локтей (около 20 метров), изготовленный из камня. Шкалу разметили на латунной полосе, вмурованной между двумя параллельными стенами, возведенными в меридианной плоскости. Изображение Солнца, проходя через особым образом проделанную щель, падало на латунную шкалу. Для точного определения углового положения Солнца (на деле, измерялось его зенитное расстояние — дополнительное по отношению к высоте) использовался подвижный диск с крестовиной из двух диаметральных линий. Ожидания от «секстанта Фахри» были выше предельной эффективности, которую мог дать этот инструмент, поскольку ал-Худжанди жаловался ал-Бируни (источнику, откуда мы черпаем эти сведения), что ось инструмента немного сдвинулась под действием его собственной тяжести (примерно на 10 сантиметров). Тем не менее ал-Худжанди получил вполне приемлемое значение для угла наклона эклиптики — 23;32,19°. (Правильным значением на 1000 г. — год его смерти — было бы 23;34,10°.)
Аналогичный, как мы уже упоминали, столь же огромный инструмент был в распоряжении Ибн Юниса, близкого современника ал-Худжанди, который работал в Египте, на большом отдалении от последнего. Можно найти упоминания о том, что у него была замечательно оборудованная обсерватория, содержавшаяся на средства Фатимидского халифа ал-Хакима, но эти сведения весьма недостоверны. Как бы то ни было, поскольку у него имелись отчеты о наблюдениях из нескольких других близкорасположенных мест, он, по всей видимости, располагал переносными инструментами, а потому обладал возможностью работать в манере, существенно отличающейся от той, в которой работали его ближневосточные современники. Здесь следует обратить внимание на то, какое большое значение восточно-исламские астрономы придавали шкале как необходимому условию достижения высокой точности, зачастую не принимая во внимание механических факторов, способных аннулировать преимущества, предоставляемые размерами шкалы. Как мы уже видели, ал-Худжанди вполне отдавал себе отчет в существовании этой проблемы, но мы также имели возможность убедиться (в главе 7) в том, что индийские астрономы продолжали строить колоссальные каменные инструменты вплоть до XVIII в. Крупные инструменты, как правило, сохраняются хуже, чем небольшие и элегантные металлические конструкции малых инструментов, и наше представление о многих из них в значительной степени зависит от античных источников.
Большие обсерватории продолжали строиться в исламском мире и после того, как главные достижения в области теоретической астрономии проникли в Европу. В качестве наиболее известных примеров можно привести Самаркандскую (1420/21) и Стамбульскую (1574/75) обсерватории. Первая представляла собой трехъярусное здание и являлась частью серьезного исследовательского учреждения, основанного Улугбеком (1394–1449) — внуком знаменитого Тимура, чаще упоминаемого в англоязычной литературе под именем Тамерлан. Интерес к астрономии пробудился у Улугбека, когда, будучи еще ребенком, он посетил руины Марагинской обсерватории и осознал величие, которым она обладала в минувшие века. В свое время Марагинская обсерватория сыграла роль значимого примера для некоторого количества не столь масштабных аналогов, но ничто не могло сравниться с ней до тех пор, пока Улугбек не начал работы по созданию ее подобия в Самарканде. Он сделал своим главным инструментом огромный каменный секстант Фахри, облицованный мрамором. Он, естественно, располагался в плоскости меридиана, но ему была придана большая устойчивость по сравнению с более ранними прототипами в ал-Рее и Мараге, поскольку его вкопали в громадную траншею с радиусом около 40 метров, прорезанную в склоне холма (ил. 88). Ее остатки обнаружили в 1908 г. В 1941 г. гробницу Улугбека перенесли в мавзолей Тамерлана в Самарканде. Он был убит наемным убийцей, нанятым его собственным сыном Абд ал-Латифом, и его скелет с очевидностью свидетельствует о том, что он принял насильственную смерть.
Портрет Улугбека (настоящее имя — Мухаммад Тарагай; 1394–1449), изображенный на советской марке 1987 г. вместе с видом его обсерватории в разрезе. Обратите внимание на массивный «секстант Фахри», отделанный мраморной кладкой вдоль центральной части шкалы. Марка была выпущена по случаю 550-летия завершения Улугбеком его звездного каталога (1437) — важнейшего труда, которым продолжали, в той или иной мере, пользоваться Эдмонд Галлей в XVII в., Джон Флемстид в XVIII в. и Фрэнсис Бейли — в XIX в.
В штат обсерватории Улугбека входил персидский математик и астроном Джамшид ал-Каши, хорошо известный сегодня как автор лучшего восточного трактата по арифметике, написанного в Средние века (1427), — работы, в которой, помимо прочего, представлена теория десятичных дробей. В числе его наиболее важных математических достижений были расчеты значений синусов 1° и 2π с точностью до шестнадцатого десятичного знака. Нет нужды говорить, какую огромную роль играли эти два числа в астрономии, поскольку они лежали в основе очень многих астрономических таблиц. Астрономы Улугбека составили известнейший зидж, названный его именем, который включал в себя очень точные таблицы синусов и тангенсов, равно как улучшенные планетные параметры и звездные положения. Координаты очень многих звезд основывались на оригинальных наблюдениях, а не просто на исправлениях, внесенных в каталоги Птолемея и ас-Суфи, что было довольно нетипично. Впоследствии этот каталог вызвал широкий интерес в Европе, особенно в первые годы серьезного знакомства с арабскими исследованиями в XVII в.
Вклад ал-Каши в астрономию заключался, в том числе, в разработке нового типа экваториума — инструмента, дававшего возможность проводить относительно простые расчеты без использования зиджей. В простейших типах экваториумов геометрические модели для расчета планетных положений имитировались посредством механических аналогов: круги изготавливались из градуированных металлических дисков, радиусы — из прутьев или нитей и т. д. Будучи правильно расположенными (обычно для этого использовались простейшие вспомогательные таблицы), упомянутые диски позволяли довольно быстро получать положения планет по долготе, не затрачивая времени на утомительную работу по просматриванию типовых планетных таблиц для среднего движения и уравнений, содержащихся в зидже. Точность, достигаемая с помощью экваториума, безусловно, не могла сравниться с той, которую позволяли получать зиджи, и хотя строгость последних была зачастую иллюзорной, истинные профессионалы предпочитали использовать для серьезных вычислений именно зиджи. Не следует думать, что ал-Каши не имел экспертных навыков в использовании планетных таблиц. У него была репутация человека, владевшего искусством быстрого счета, и в годы своей молодости он произвел ревизию зиджа Насира ад-Дина ат-Туси. Помимо обычного материала, он включил в эту книгу, получившую название «Зиджа Хакани», календари всего восточного мира вплоть до Китая; и именно в этой работе он зарекомендовал себя как один из очень немногих средневековых астрономов, пытавшихся улучшить сложную теорию планетных долгот, изложенную в «Альмагесте» Птолемея. (В более ранних попытках, предпринятых Ибн ал-Хайсамом и ат-Туси, использовались модели, чем-то напоминающие концентрические сферы Евдокса.) Судя по всему, этот блестящий ученый был ближайшим советником Улугбека во время создания обсерватории, выполнявшей также функции исследовательского учреждения. Слава Улугбека как мудрого правителя может быть оценена по достоинству только по его внедворцовой деятельности, которая, безусловно, затмевает все другие его дела.
Случай Стамбульской обсерватории интересен тем, что он почти совпадает по времени с основанием большой обсерватории Тихо Браге Ураниборг на балтийском острове Вен. Подобно Самаркандской обсерватории и обсерваториям XVIII в., построенным Джай Сингхом II в Дели, Джайпуре, Мадрасе и Бенаресе, в ней снова широко использовались крупномасштабные каменные инструменты. Теперь все внимание уделялось надежной установке и градуировке этих поистине монументальных инструментов, однако их полезное применение ограничивалось очень небольшим кругом задач, связанных преимущественно с определением солнечных положений. И даже в этом случае ошибка в определении положения солнечного изображения на шкале (щель, используемая для получения солнечного изображения, давала как тень, так и полутень) приводила к ощутимой неопределенности в значениях измеряемых углов.
Источник
«Космос. Иллюстрированная история астрономии и космологии»
«Космос. Иллюстрированная история астрономии и космологии» (издательство «НЛО»), переведенная на русский язык Константином Ивановым, — книга энциклопедического охвата. Британский историк науки Джон Норт проводит прямую линию от работы великих астрономов прошлого до достижений современной науки, упоминая более 1600 астрономов и других исторических персонажей. N + 1 предлагает своим читателям ознакомиться с фрагментом главы «Математика и солнечная система», который посвящен попыткам Жозефа Луи Лагранжа и Пьера-Симона Лапласа объяснить вековое ускорение движения Луны.
Математика и солнечная система
Одна из наиболее сложных проблем небесной механики XVIII в., действовавшая как постоянный стимул для дальнейшего развития, также касалась неравенств в движении Луны. Среднее движение Луны, усредняемое за весьма долгий период (скажем, за тысячелетие, а не за сто лет), является не постоянной величиной, если сравнивать значения, разделяемые очень большими временными интервалами, а несколько ускоряется. Подозрение в этом впервые высказал Эдмонд Галлей около 1693 г. на основании сравнения данных о затмениях, зарегистрированных в Античности, с тем, что давали в отношении тех же затмений лучшие современные таблицы. В 1749 г. Ричард Данторн вновь оживил интерес к этому предмету и привел дополнительные античные данные, подтверждающие подозрения Галлея. Ускорение было крайне незначительным, и его небольшое значение служит полезным критерием для оценки прогрессивного развития астрономической точности. Данторн установил для него величину всего лишь 10″ за столетие, а другие астрономы, работавшие в конце XVIII в., такие как Майер и Лаланд, были согласны в том, что эта величина должна лежать в интервале между 7″ и 10″ за столетие. Но какова его физическая причина? В 1770 г. Парижская академия объявила о премии за решение этой проблемы, которую получили Эйлер и его сын Иоганн Альбрехт. Однако у них сложилось впечатление, что их доказательство постепенного («векового») ускорения Луны не может быть объяснено через ньютоновские гравитационные силы.
Здесь снова возникло нечто, похожее на кризис ньютоновской науки, и эта тема была предложена Академией в качестве призовой в 1772 г. На этот раз ее получили Эйлер совместно с Лагранжем.
Жозеф Луи Лагранж родился в итальянской семье французского происхождения в Турине (Италия). (Его французское имя представляет собой только последний вариант непрерывно изменяющегося набора фонем.) Еще до того как ему исполнилось двадцать лет, он обратил внимание на свои математические таланты, вступив в переписку с Эйлером. Последовав примеру Эйлера, он применил в 1760-х гг. несколько собственных гениальных методов к изучению движения Луны, а также к изучению возмущений Юпитера и Сатурна, что снискало ему премию Парижской академии и широкую известность. Для него нашли место в Берлине благодаря дружбе д’ Аламбера с королем Пруссии Фридрихом II. Эйлер, который собирался оставить должность в Берлине накануне переезда в Санкт-Петербург, не сумел убедить его последовать за собой, но в Берлине у него осталось несколько энергичных коллег, включая Иоганна Ламберта, чьи космологические идеи мы уже рассматривали. Вскоре феноменальный математический талант Лагранжа стал очевиден для всех. В 1772 г. он разделил с Эйлером премию Академии за сочинение, посвященное проблеме трех тел, рассмотренную в данном случае на примере движения Луны. На сей раз Эйлер в своем эссе от 1772 г. выдвинул идею, что нет никакой возможности объяснить вековое ускорение Луны через гравитацию, но в пространстве должен существовать некий эфирный флюид, оказывающий сопротивление движению Луны и Земли. Лагранж предложил свое решение проблемы трех тел, но не смог объяснить векового ускорения.
В 1774 г. Академия опять объявила о присуждении премии за решение этой проблемы, и Лагранжу снова удалось получить ее, приняв в рассмотрение то, каким образом форма Луны может воздействовать на ее движение. Такое же рассмотрение было проведено им и в отношении Земли. Тем не менее он не нашел объяснения векового ускорения и, изучив относящиеся к этому исторические свидетельства, заявил, что сама идея весьма сомнительна, а потому должна быть отброшена.
Череда академических премий продолжала привлекать сочинения высочайшего качества, но Лагранжа стали утомлять затруднения, которые они создавали в его работе, и он предпочел заняться независимым написанием собственных трудов. В последний раз он выиграл эту премию в 1780 г., получив ее за важное исследование возмущения кометных орбит в результате воздействия, оказываемого планетами. Он внес величайший вклад в планетную теорию Ньютона, издав несколько дополнительных мемуаров. Ему удалось уцелеть в беспокойные революционные годы, когда в 1787 г. судьба забросила его в Париж. Там он стал членом Бюро долгот и смог оказать помощь в обеспечении практических потребностей астрономии, таких как составление эфемерид, чему он научился еще в Берлине. Он был удостоен чести получить награду от Наполеона, а после смерти, наступившей в 1813 г., надгробную речь в его честь произнес в Пантеоне Пьер-Симон Лаплас, уже решивший к этому времени проблему, которая так долго не давалась Лагранжу и остальным.
Лаплас родился в Нормандии, где он обучался в университете в Каннах, пока не переехал в 1786 г. в Париж по рекомендации д’ Аламбера. Серия блестящих математических работ, которые он опубликовал в течение пяти лет, привела его к избранию в Парижскую академию наук. Он писал об интегральном исчислении, о небесной механике и о теории вероятностей. Серия томов его «Mécanique céleste» («Небесная механика») выходила с 1799 по 1825 г., и в них, как и в своих ценных сочинениях по физике, он весьма активно использовал множество математических приемов, разработанных самостоятельно, которые до сих пор широко применяются и носят его имя. Работы Лапласа были слишком важны, чтобы остаться незамеченными в англоговорящем мире, и перевод первых четырех томов, сделанный бостонским математиком и астрономом-самоучкой Нафанаилом Боудичем, оказался весьма неплох.
Лапласа ничто не увлекало, кроме его несравненного гения, в результате чего он лишился многих друзей, но осознавал необходимость сделать математические науки доступными для широкой аудитории, и одну из своих наиболее популярных работ он приспособил для легкого чтения — «Exposition du système du monde» («Изложение системы мира», впервые опубликована в 1796 г.). Она была посвящена очень широкому кругу космологических вопросов. Его работа в области математической астрономии достигла своего пика в революционный период во Франции, и он имел возможность оказать очень значительное влияние на организацию интеллектуальной жизни Франции на всех ее уровнях. Во времена империи Наполеон удостаивал его всевозможных почестей и обсуждал с ним астрономические вопросы (по слухам, однажды такой разговор состоялся прямо на поле битвы). Однако титул маркиза он получил только после возвращения Бурбонов и высылки Наполеона.
Когда Лаплас приступил к изучению возможного ускорения движения Луны, он начал с отклонения утверждений скептиков, что исторические свидетельства его существования ненадежны. Он также отклонил предложенное ранее решение, согласно которому этот эффект был не более чем иллюзией, порождаемой замедлением вращения Земли в результате трения, предположительно производимого земными ветрами. Почему же в таком случае, задался вопросом он, также не увеличивались средние движения планет? Ответа не последовало. Что касается эфирного флюида, о котором упоминал Эйлер, то Лаплас отверг его из-за отсутствия независимых доказательств. Короче говоря, он честно занялся решением этой проблемы в том виде, в каком она существовала тремя поколениями ранее.
Тем не менее ему не удалось решить ее, и поэтому он пошел на внесение изменения в закон гравитации Ньютона. Сила гравитации, оказываемая одним телом на другое, как обычно предполагалось, действует мгновенно, но что если для оказания этого воздействия ей требуется конечное время? Это, как показал Лаплас, могло привести к вековому ускорению Луны, но только в том случае, если скорость действия гравитации больше скорости света в восемь миллионов раз. (Кроме того, как он показал, вековое ускорение можно объяснить и другими способами, если принять, что скорость гравитации превышает скорость света в пятьдесят миллионов раз, в противном же случае доказать ее существование невозможно.) Его не вполне удовлетворяло это решение, которое, как и эфир, никак нельзя было считать самоочевидным; но затем, в 1787 г., он нашел гораздо более приемлемую альтернативу. Форма земной орбиты, как он обнаружил, изменяется; по сути, он выяснил, что значение эксцентриситета эллипса уменьшается, и ему удалось связать этот эффект с постепенным уменьшением продолжительности месяца. Этот анализ был дополнен проведенным им исследованием движения спутников Юпитера. (На деле, Юпитер учитывался при расчете поведения нашей собственной Луны.) Он рассчитал теоретическое выражение для векового ускорения Луны, которое во времена его жизни давало значение около 10,1816″, близкое к лучшим историческим свидетельствам; и он показал, что примерно через 24 000 лет вековое изменение сменит знак, и месяц начнет удлиняться.
Когда Лагранж прочел работу, в которой объявлялось об этих открытиях, он пересмотрел свою раннюю работу 1783 г. и обнаружил упущение, дающее при правильном использовании почти такой же результат, как у Лапласа. Спустя много лет «первооткрыватель Нептуна» Джон Куч Адамс показал, что теория Лапласа не может объяснить все известные эффекты, но его достижение бесспорно имело важное значение и в течение долгого времени рассматривалось как шедевр небесной механики.
Подробнее читайте:
Норт, Дж. Космос. Иллюстрированная история астрономии и космологии / Джон Норт; перевод с английского К. Иванова. — М.: Новое литературное обозрение, 2020. — 1104 с.
Источник