Образование двойной планеты Земля-Луна
Земля и Луна фактически представляют собой систему двойной планеты. Их влияние друг на друга сейчас невелико, хотя и вполне заметно, но на ранних этапах развития этой системы оно было исключительно сильным, приводило к катастрофическим последствиям и радикальным изменениям хода эволюции обеих планет. Поэтому рассмотрим происхождение Земли и Луны совместно. При этом, оправдывая повышенное внимание к Луне в данной работе, посвящённой эволюции Земли и её геодинамике, заранее отметим, что именно Луна как спутник нашей планеты послужила тем спусковым механизмом, который запустил и существенно активизировал тектоническое развитие молодой Земли в самом начале архея. Кроме того, Луна «раскрутила» нашу планету, определила своей орбитой захвата наклон оси её вращения, а с этим явлением, как известно, связаны и вся климатическая зональность Земли, и происхождение её магнитного поля. Более того, сейчас определённо можно утверждать, что именно Луна, ускорив эволюционное развитие Земли, косвенно способствовала появлению на её поверхности высокоорганизованной жизни, а следовательно, и нас с вами. Но всё это чисто земные проблемы, разобраться с которыми, однако, без разработки адекватной теории развития двойной планеты Земля-Луна просто невозможно.
В отличие от предыдущего раздела здесь мы опишем не традиционные точки зрения на формирование системы Земля-Луна, а новую модель образования Луны за счёт приливного разрушения на пределе Роша более массивной планеты — Протолуны. Эта модель, судя по всему, лучше других объясняет практически всю совокупность современных знаний о составе, строении и истории развития естественного спутника нашей планеты, а также объясняет происхождение осевого вращения Земли и реально существующего распределения моментов количества движения между Землёй и Луной.
Одной из главных трудностей, встающих на пути построения адекватной теории образования Луны, по нашему мнению, является объяснение её резкого обеднения железом, сидерофильными и халькофильными элементами. Действительно, судя по средней плотности Луны (p =3,34 г/см 3 ), она содержит лишь около 5% железоникелевой фазы (Рингвуд, 1982), или с учётом средней концентрации FeO в её мантии — только около 13-14% тяжёлой фракции. Это намного меньше, чем среднее содержание соединений железа в недифференцированном веществе углистых хондритов (28,6%) и тем более в земном веществе — около 37%. Кроме того, судя по изотопным отношениям свинца, Луна почти полностью потеряла весь первичный свинец, а входящий сейчас в её породы свинец практически полностью радиогенного происхождения (т.е. образовался за счёт радиоактивного распада урана и тория).
Учитывая эти различия, предлагались гипотезы образования Луны в других областях Солнечной системы, обеднённых соединениями железа, с последующим её захватом гравитационным полем Земли (Alfven, 1954, 1963; Urey, 1962). Все гипотезы этой группы страдают двумя недостатками. Во-первых, вероятность гравитационного захвата с далёкой орбиты такого большого космического тела, как Луна, исчезающе мала и практически равна нулю. Во-вторых, совершенно непонятно, как в этом случае объяснить столь резкий дефицит железа в лунном веществе, если его содержание в наиболее примитивных углистых хондритах приблизительно в два раза выше. Кроме того, углистые хондриты обогащены летучими и легкоподвижными элементами, а Луна ими резко обеднена.
Сложность объяснения захвата Землёй крупного спутника из далёкой области Солнечной системы привела к появлению другой группы гипотез, согласно которым Луна образовалась в области формирования самой Земли, составив вместе с ней систему двойной планеты. Наиболее разработанной из гипотез такого рода является гипотеза Е. Л. Рускол (1960-1975). Близка к ней модель А. Харриса и В. Каулы (1975) о совместной аккреции Земли и Луны, начавшейся, ещё когда у Земли была только 0,1 её современной массы, причём Луна формировалась по этим гипотезам на расстояниях около 10 земных радиусов в течение большей части времени её роста. Однако и эта группа гипотез, постулирующая возникновение наших планет из единого резервуара протопланетного вещества, не смогла объяснить дефицит железа и сидерофильных элементов на Луне. Кроме того, эти модели исходили из предположения, что осевое вращение Земли существовало изначально, происходило в ту же сторону, что и обращение спутника, но по угловой скорости собственного вращения превосходило угловую скорость орбитального обращения спутника. Интересна гипотеза Г. Герстенкорна (1955, 1977) о захвате Луны и дальнейшей приливной эволюции её орбиты, при которой Луна подходила близко к так называемому пределу Роша, т. е. к наименьшему расстоянию между спутником и центральной планетой, ближе которого массивный спутник начинает разрушаться гравитационным полем планеты. Однако и в этой модели Луна оставалась неизменной от рождения и до наших дней, а поэтому тоже не объясняла существующего дефицита железа в лунном веществе.
Наряду с отмеченной аномалией содержания железа в Луне, составы её базальтов удивительно напоминают составы примитивных базальтов срединно-океанических хребтов Земли. Кроме того, данные по изотопам кислорода также говорят в пользу родственного происхождения Земли и Луны и отличного от них происхождения углистых и обычных хондритовых метеоритов. На этом основании А. Рингвуд (1982) сумел убедительно показать геохимическую общность лунного вещества с веществом земной мантии. Однако из этого факта А. Рингвуд делает совершенно экзотический вывод, будто Земля вскоре после своего образования и выделения у неё плотного ядра очень быстро раскрутилась и за счёт возникшей благодаря этому ротационной неустойчивости от её мантии оторвался крупный кусок вещества, превратившийся затем в Луну. Идея эта не нова и около ста лет назад высказывалась Дж. Дарвином — талантливым геофизиком, сыном гениального Ч. Дарвина, но, к сожалению, с механической точки зрения она оказалась неверной.
Рассматривая происхождение Луны, необходимо учитывать крайнюю степень дифференцированности её вещества, приведшую к отделению силикатов от железа и к их значительному обеднению сидерофильными элементами. Такая полная дифференциация вещества могла происходить лишь в теле достаточно крупной и обязательно расплавленной планеты. Это важный вывод, и не считаться с ним нельзя. Об образовании Луны из первоначально расплавленной планеты, в частности, говорит и состав её мощной анортозитовой коры (состоящей в основном из кальциевого полевого шпата — анортита), масса которой могла выделиться только из полностью расплавленного вещества более крупного, чем Луна, космического тела. По данным определения возраста лунных анортозитов, процесс этот развивался около 4,6-4,4 млрд лет тому назад, т.е. в период, близкий по времени к моменту образования самой системы Земля-Луна. Следовательно, можно ожидать, что Луна прошла стадию полного планетарного плавления и дифференциации ещё во время своего образования.
Второй весьма примечательный факт, который обязательно необходимо учитывать при разработке гипотезы образования Луны, состоит в том, что суммарный момент количества вращения системы Земля-Луна в точности отвечает ситуации, при которой обе планеты в своё время находились на расстоянии предела Роша и обладали синхронной угловой скоростью вращения. Такое совпадение не может быть случайным, наоборот, оно свидетельствует о том, что при образовании Луна действительно находилась на пределе Роша и могла подвергаться разрушению.
Учитывая приведённые данные и соображения, представляется наиболее вероятным, что Луна является остатком некой более крупной планеты — Протолуны, захваченной растущей Землёй с соседней ближайшей орбиты (или образовавшейся вблизи самой Земли из околоземного протопланетного роя планетезималей) и разрушенной гравитационным полем Земли на пределе Роша. В качественной форме близкие идеи о двухэтапном образовании Луны за счёт приливного разрушения более крупной планеты и последующего захвата её частей ранее высказывали Дж. Вуд и Х. Митлер (1974), а также Е. Эпик (1961). По аналогии с этими идеями в наших работах предлагается гипотеза, согласно которой Луна образовалась за счёт сохранения от разрушения в полости Роша лишь внешнего приливного горба предварительно расплавленной и прошедшей полную дифференциацию планеты — Протолуны.
Источник
Система Земля-Луна
Если вы пройдете мимо адски раскаленной Венеры, то приблизитесь к удивительной 3-й планете о Солнца. Это голубая сфера, наполненная водой и разумными организмами. Опуститесь ниже и разглядите континенты и огромное количество разных формирований. Добро пожаловать на Землю. Перед вами система Земля-Луна.
Система Земля-Луна: Чудо жизни
Южная Скандинавия, снятая до полуночи в момент полнолуния. Выделяются зеленые северные сияния (сверху), мрачность Балтийского моря (внизу справа), облачный покров (вверху справа) и норвежский снег, освещенный полной Луной. Благодаря городским огням можно рассмотреть береговую линию Скагеррака и Каттегатского моря, ведущего к Балтийскому.
Пока система Земля-Луна выступает единственной на все пространство, способной похвастаться планетой с жизнью. Причем это невероятное разнообразие видов, где первый организм зародился 3.5 млрд. лет назад. Сначала это были простые одноклеточные, проживающие в воде. Фотосинтез помогал получать энергию от Солнца. Клеточная мутация и перемена среды помогли зародиться сложным формам. Сегодня есть животные, растения, микробы и люди.
Эволюция жизненных форм – долгий и сложный процесс. В ранней системе Земля получала много ударов от метеоритов и астероидов, каждый из которых мог стереть весь прогресс. Полагают, что случилось 5 массовых вымираний. Последнее произошло 65 млн. лет назад, когда астероид размером с Эверест поразил планету и забрал с собою динозавров. Но это помогло развиться млекопитающим и получить контроль над территориями. А за ними пришли и люди.
Зона обитаемости
Красный спрайт над белым светом активной грозы (вверху слева). Спрайты – крупные электрические разряды, которые не выступают обычной молнией. Это прохладная плазма, лишенная раскаленности, наблюдаемой под грозами. Они скорее напоминают разряд люминесцентной трубки. Полагают, что подобные энергетические вспышки формируются во время крупных событий грозы.
Луна вращается вокруг Земли, а сама система расположена на идеальном расстоянии от Солнца. Здесь присутствует комфортная температура для наличия воды в жидком состоянии. Подобные территории именуют зоной обитаемости. Тонкое кольцо начинается за орбитой Венеры и тянется к Марсу. Если бы мы подошли ближе к Солнцу, то океаны вскипели, а атмосфера разрушилась.
Система Земля-Луна — двойные планеты ?
Ближайшим соседом Земли выступает Луна. Это единственный спутник, который у нас есть. Луна меньше Земли, но ее размеры все еще заставляют некоторых думать, что Луна и Земля – двойная планета. Возможно, дело также в небольшом расстоянии между ними. Но Луна — спутник, потому что центр масс находится на земной поверхности, а не в пространстве. Полагают, что Луна появилась после того, как огромное небесное тело врезалось в Землю и вырвало материал на орбиту примерно 4.5 млрд. лет назад.
Изначально спутник находился ближе к планете и на орбитальный путь тратил 20 дней, а не современные 28. Тогда земной день занимал 18 часов. Но планетарное вращение замедлилось и спутник начал отдаляться, что продолжает делать и сейчас.
Луна оказывает сильное воздействие на планету. Гравитация позволяет удерживать Землю на оси, иначе она бы дико раскачивалась. Также спутник вызывает океанические приливы. Многие верят, что без Луны жизнь на Земле никогда бы не появилась.
Источник
Почему Землю и Луну называют двойной планетой
Термин “двойная (бинарная) планета” описывает один из видов взаимоотношений между двумя космическими телами. О том, что Земля и Луна — двойная планета, Европейское астрономическое сообщество впервые заговорило в конце прошлого века. Кроме того, астрономами описаны такие космические явления, как двойные астероиды, двойные звезды.
Определение двойной планеты
Этим термином в среде астрономов принято обозначать бинарную систему из двух космических тел, каждое из которых обладает достаточной массой для оказания гравитационного эффекта. Гравитация астрономических тел должна превосходить гравитационный эффект звезды, являющийся центром их вращения.
Еще одно требование заключается в том, что обе части такой бинарной системы должны вращаться вокруг общего центра массы, находящегося над их поверхностями.
Это условная точка, являющаяся общим центром масс, называется также барицентром.
Общий центр масс, вокруг которого вращаются Земля и Луна, располагается под земной поверхностью. Однако, несмотря на это, Европейское астрономическое общество выдвинуло предложение рассматривать систему, состоящую из Земли и ее спутника, в качестве бинарной системы.
Такая инициатива обусловлена тем, что Луна резко отличается от остальных спутников в Солнечной системе:
- Она — один из самых крупных и тяжелых в Солнечной системе спутников по отношению к своему центральному космическому телу. Размеры космических тел, сопровождающих другие планеты Солнечной системы, составляют 1/10 долю диаметра центральных небесных тел, а то и менее. В свою очередь, поперечник Луны составляет четверть поперечника космического объекта, вокруг которого вращается данный спутник.
- Необычна для планетарного спутника и масса Луны. Она составляет 1/81 от масса центрального космического тела, тогда как спутники других планет Солнечной системы легче своих центров вращения в десятки тысяч раз.
Еще одна особенность, которая приводится в качестве аргумента в пользу двойной планеты Земля-Луна, — это близость данных космических объектов. С этой особенностью исследователи связывают следующий примечательный факт: путь Луны вокруг Солнца практически повторяет земной, отличаясь от него лишь незначительно.
Для наглядности приводится такой пример: для условного наблюдателя, помещенного на поверхность Солнца, траектория движения земного спутника представилась бы несколько волнистой линией, которая почти совпадала бы с земной орбитой.
Все эти аргументы кажутся сторонникам теории о бинарной планете «Земля-Луна» достаточно убедительными, несмотря на ряд различий двух небесных тел:
- Широкий диапазон температур на лунной поверхности: за ночь она остывает до -173°C, тогда как в течение дня нагревается до 130С. В свою очередь, земные температурные колебания намного менее выражены.
- Земное ядро обладает намного более выраженной гравитацией.
- На земном спутнике, в отличие от Земли, нет воды. Лунные моря представляют собой долины, заполненные окаменевшей лавой; сверху их покрывает слой пород, выброшенных когда-то вулканами. Их кратеры видны и сейчас: они достигают 200 км в диаметре, окружены возвышающимися в виде вала крутыми склонами.
В подобных взаимоотношениях находится еще одна пара астрономических объектов в Солнечной системе: Солнце и Юпитер. Однако, поскольку Юпитер звездой не является, классифицировать эту пару как бинарную планету или двойную звезду нельзя.
Земля и Луна — двойные планеты
Общий центр масс, вокруг которого вращаются Земля и Луна, располагается под земной поверхностью. Местоположение этой точки нестабильно. Она медленно движется по направлению к земной поверхности.
Это связано с постепенным увеличением расстояния между Землей и ее естественным спутником. Выход общего центра массы в пространство над земной поверхностью ознаменует превращение бинарной системы “Земля-Луна” в двойную планету.
Превращение пары космических тел, состоящей из Земли и ее спутника, в двойную планету прогнозируется на ближайшие несколько миллиардов лет.
Тогда Луна под действием приливных сил отдалится от сопровождаемой планеты настолько, что центр масс, вокруг которого объекты вместе вращаются, сместится из-под земной поверхности в пространство между этими астрономическими телами. Отдаление земного спутника от центра вращения происходит со скоростью 3 см 7,4 мм в год.
Рассчитать точный период времени, который понадобится для превращения пары Земля-Луна в двойную планету, пока затруднительно.
Плутон-Харон
Пару астрономических объектов, состоящую из космического тела Плутон и его спутника под названием Харон, было предложено считать двойной планетой в 2006 г. Решение было принято Генеральной Ассамблеей международного астрономического Союза.
Из всех спутников Солнечной системы Харон более всех приблизился по размеру и массе к космическому объекту, который сопровождает, — он всего вдвое меньше его.
Источник