Длина тени при изменении солнца
Длина,
см
Графики изменения длины тени в Казани и Новомосковске 22.03.2016
Существенно отли-чается в одно и то же время длина тени в Казани и в Новомосковске. Её размер минимален в различное время.
27 марта мой брат ездил в Москву и сделал несколько измерений во время близкое к 12 часам 30 минутам. В это же время я проводил измерения в Новомосковске
Изменение длины тени 27.03.2016 (г.Москва, г. Новомосковск,)
Время, ч. мин
Москва
Длина, см
Новомосковск
Длина, см
Время, ч. мин
Москва
Длина, см
Новомосковск
Длина, см
Для удобства построения графиков и сравнения результатов значения необходимо было свести к единым промежуткам измерения.
Время, ч. мин
Москва
Длина, см
Новомосковск
Длина, см
Время,
ч. мин
Длина, см
Тень в Москве длиннее, чем в Новомосковске. Это ещё раз подтвердило вывод, полученный в пункте 3.2.1. Чем точка южнее, тем тень короче.
Географические координаты мест осуществления проекта 22 и 27 марта
Широта
Долгота
город Новомосковск
54° северной широты
38° восточной долготы
город Москва
56° северной широты
37,5° восточной долготы
город Казань
56° северной широты
49° восточной долготы
В одно и то же время тень была измерена в Новомосковске и Казани (22 марта) и в Москве и Новомосковске (27 марта). Но сравнивать правильнее Москву и Казань, так как они находятся на одной параллели. Измерения в этих городах проходили с разницей в 5 дней, поэтому длины теней отличаются.
Самая короткая тень в Казани наблюдалась раньше по времени, чем в Новомосковске, потому что Казань восточнее, а оба города живут по московскому времени.
В астрономический полдень в Казани тень длиннее, чем в Новомосковске, так как Казань севернее Новомосковска (см. таблицу выше).
Изучение тени в разное время года
День зимнего солнцестояния является самым коротким днём (с самой длинной ночью) в году. В 2016 году этот день был 21 декабря. В этот день высота солнца над горизонтом в полдень минимальна. Зимой производить измерения тени сложнее, так как нет ровной, сухой поверхности на улице. Также большинство дней в декабре пасмурные, а мне для эксперимента необходим солнечный.
Я приготовил лист похожий на листы для предыдущих измерений. 20 декабря я попытался измерить тень от моей палки. Но тень оказалась такой огромной, что она не поместилась на листе. К следующему дню я приготовил большой кусок обоев.
Какой длинной оказалась тень, можно судить по фотографии листа обоев, на котором я делал метки. Свои измерения я занес в таблицу
Сравним измерения, проведённые в Новомосковске в августе, декабре и марте.
Изменение длины тени в г. Новомосковске в разное время года.
Время,
ч. мин
Декабрь
Длина,
см
Март
Длина,
см
Август
Длина,
см
Самая короткая тень летом, самая длинная — в декабре.
Самая короткая тень в любое время года в интервале 12:25 – 12:35
Время, когда зафиксирована самая короткая тень – астрономический полдень.
Направление тени не совпадает с направлением стрелки компаса.
Изучение тени за Полярным кругом
Работая над проектом, мне становилось всё интереснее и интереснее узнавать как ведёт себя тень в разных географических точках. Мой папа работает за Полярным кругом, проживает в вахтовом посёлке Ямбург.
Он подсказывал мне, как выполнить палку-шест и подставку для самодельного гномона и поддерживал меня при выполнении измерений в разных городах. Поэтому он был в курсе содержания моего проекта. Я попросил его выполнить измерение тени в посёлке Ямбург. 27 марта измерения были проведены. В качестве шеста-палки была использована лопата, которую вкопали вертикально в снег, оставив ровно 1 метр черенка над уровнем поверхности. Зная, что разница во времени составляет 2 часа, я свёл данные измерений в одну таблицу по московскому времени.
Изменение длины тени в дневное время
(Москва, Новомосковск, посёлок Ямбург 27.03.2016)
Время, ч. мин
Москва
Длина, см
Новомосковск
Длина, см
Ямбург
Длина, см
Время, ч. мин
Москва
Длина, см
Новомосковск
Длина, см
Ямбург
Длина, см
Самая длинная тень в Ямбурге.
Самая короткая тень в Новомосковске.
В Новомосковске и Москве самая короткая тень примерно в одно и то же время в 12:32.
Самая короткая тень по измерениям в Ямбурге в 9:57 (по московскому времени).
Самая короткая тень – астрономический полдень.
Анализ проделанной работы
Ошибки и сложности при выполнении
Первоначально я выполнял измерения на асфальте мелом, придерживая палку рукой. Это привело к неточным результатам. Некачественное оборудование не позволяет правильно выполнить измерения.
Я мог выполнять измерения только в хорошую погоду. Это не позволяло мне выполнять мою работу когда я хотел. Сложность выполнения моего проекта – зависимость от погоды.
Изучая тень зимой, я предполагал, что тень будет длинной, и подготовил лист в два раза длиннее, чем для лета. А оказалось, что она была длиннее в пять раз, поэтому пришлось готовиться заново. Неожиданные результаты измерения осложняют выполнение проекта.
Изучение тени я проводил в разных местах. В Анапе измерения выполнял через два дня после Новомосковска (время потраченное на дорогу). За это время тень немного изменилась (я посчитал погрешность незначительной). Я хотел сравнить тень в Казани и Москве, так как эти города лежат на одной параллели. Но так как между измерениями был большой промежуток времени, это не получилось. Сложность моего проекта – невозможность выполнения опытов в одно и то же время в разных местах.
Чтобы моя работа была интереснее, необходимо было выполнять измерения тени в разных местах. Мне удалось получить результаты из Новомосковска, Казани, Москвы, Анапы, Воронежской области и Ямбурга. Но одному это было сделать невозможно. Поэтому мне помогали мои родственники. Для успешного выполнения моей работы необходимо было привлечение помощников.
Анализ полученных результатов. Выводы.
Измерение в Новомосковске, Анапе, Москве, под Воронежем, в Ямбурге доказывают, что:
а) у точек, расположенных примерно на одной долготе астрономический полдень примерно в одно и то же время;
б) длина тени определяется широтой местности, то есть высотой Солнца в астрономический полдень в этой местности;
в) длина тени зависит от времени года, то есть от положения Земли относительно Солнца;
г) астрономический полдень наступает раньше у точек, расположенных восточнее, так как Земля вращается с запада на восток;
д) длина тени примерно одинакова в одно и то же время у точек, расположенных примерно на одной широте, так как высота Солнца одинакова;
е) высота Солнца меняется по сезонам, так как при движении вокруг Солнца земная ось остаётся параллельно сама себе, а ось наклонена к плоскости орбиты (Москва и Казань находятся на одной широте, но тень получилась разная, так как измерения проводились с интервалом в 5 дней);
ж) направление на север, полученное с помощью гномона, не совпадает с показаниями компаса, так как не совпадает положение географического и магнитного полюсов.
Заключение
Работая над проектом, я опирался на знания, полученные на уроках географии, научился применять их на практике, анализировать результаты эксперимента. Для большей наглядности я вносил эти данные в таблицы и строил графики, то есть научился работать с информацией представленной не только в текстовом варианте. Для точного измерения тени использовал самодельное оборудование. Мне пригодились знания по математике, информатике и технологии.
В осуществлении проекта меня поддерживали и помогали учитель географии Жанна Вячеславовна Баландина и члены моей семьи.
Список используемой литературы
Источник
Построение теней от предметов при солнечном освещении.
Учебный модуль 3. Построение теней и отражения в перспективе.
Тема 7. Общие понятия о построении теней в перспективе.
В изобразительном искусстве построение теней от различных источников освещения имеет очень большое значение. Глаз человека воспринимает предметы в окружающем пространстве благодаря их освещённости.
Изображение теней в перспективе даёт возможность передать рельеф и форму предметов, их положение в пространстве, состояние погоды и т.д. Изображение светотени позволяет художнику находить сложные композиционные решения и сосредоточить внимание зрителя на главном, погружая в тень всё второстепенное.
Распределение света и тени на поверхности предмета называется светотенью. Собственной тенью называют неосвещённую часть предмета. Её границы определяются лучами света, касательными к предмету. Границу между освещенной и неосвещённой частями предмета называют линией разделасвета и тени.
Тень, которая отбрасывается освещённым предметом на предметную плоскостьили какую-либо поверхность, называется падающей тенью. Для построения её контура необходимо определитьлинию светораздела.
Тени могут быть построены двумя способами. Первый заключается в том, что тени строят на ортогональных чертежах, а затем переносят их в перспективу в процессе построения самого перспективного изображения. Второй способ (наиболее распространённый) заключается в том, что построение теней выполняют непосредственно на изображении объекта.
Построение падающей и собственнойтени предмета связанно с условием его освещения. В теории перспективы рассматривают два вида освещения сосредоточенным светом:естественное и искусственное.
При естественномосвещении источник света (Солнце, Луна) практически бесконечно удалён от предмета и размеры его малы в сравнении с расстоянием до предмета. Такое освещение параллельнымилучами называют солнечным. При солнечном освещении лучи, касательные к предмету, образуют цилиндрическую или призматическую поверхность.
Искусственный источник света, как правило, расположен на небольшом расстоянии от предмета и размеры его малы по сравнению с освещаемым объектом. Такое освещение можно рассматривать как освещение радиальными лучами ( освещение от лампы, фонаря, свечи и т.д.). Лучи, касаясь предмета, образуют как бы пирамидальную или коническую поверхность.
Построение теней от предметов при солнечном освещении.
При солнечном освещении лучи света принимают за параллельные, так как светящаяся точканаходится условно в бесконечности. Особенностью в построении падающей тени при солнечном освещении являться то, что проекция точки схода световых лучей, точкаS, всегда располагается на линии горизонта.
По отношению к зрителю и картине солнце может занимать три главных положения, которые определяют три основных направления солнечных лучей.
1. Солнце расположено в предметном пространстве, то есть, находится против наблюдателя, по ту сторону картины. Солнечные лучи — это восходящие параллельные прямые. Точка схода S солнечных лучей находится над линией горизонта в заданном месте. Её проекцияS1 располагается на линии горизонта. При таком положении солнца почти все видимые части предметов окажутся в тени, а падающие тени будут направлены на зрителя.
Для определения величины и направления тени от вертикали АВ надо из точкиS1 провести проекцию луча через нижнюю точку В до встречи с лучом, проведённым из точкиSчерез верхнюю точку А.
Для построения тени от прямоугольника проводим из точки S1 проекции лучей через нижние углы прямоугольника до встречи их с лучами, проведёнными из точкиS через верхние углы прямоугольника.
Построение теней от предметов, когда солнце расположено в предметном пространстве.
2. Солнце расположено в промежуточном пространствесправа или слева от наблюдателя. Лучи и их проекции параллельны плоскости картины, то есть являются фронтальными прямыми и наклонены к предметной плоскости под произвольным или заданным углом. Лучи не имеют точки схода и остаются параллельными между собой, их проекции на предметную плоскость будут параллельны основанию картины.
Тень, падающая от вертикали АВ, будет горизонтальной и параллельной основанию картины. Для определения её величины проводим из вершины А луч до пересечения с его проекцией, проведённой из точки В. Направление солнечных лучей на картине указывается заданным углом наклона к её основанию. Угол наклона лучей к предметной плоскости для средних широт выбирают в пределах от 35 0 и 45 0 .
Построение теней от предметов, когда солнце расположено в промежуточном пространстве.
Принцип построения теней от объекта остается таким же, как и в ортогональных проекциях. Через вершину каждого ребра проводим луч, под заданным углом наклона, до пересечения его с проекцией, проведённой через нижнюю точку ребра. Вершины тени соединяем прямыми, параллельными горизонтальным рёбрам и направленными в точки схода на линии горизонта. Предмет к зрителю будет обращён частично освещённой и теневой стороной.
Если объект имеет сложную форму (состоит из разных объемов), то в этом случае падающая тень будет расположена не только на предметной плоскости, но и на самом объекте.
Рассмотрим пример построения падающих теней от фигуры, состоящей из трёх разновеликих объемов.
Начнём с построения тени от вертикального объёма. Через верхнюю точку ближнего ребра проводим луч под заданным углом наклона. Проекцию этого луча проводим через нижнюю точку ребра, параллельно основанию картины, до нижней грани вертикальной плоскости центральной фигуры. По этой плоскости проводим прямую вертикально вверх до её пересечения с лучом. Найденную точку соединяем с точкой пересечения горизонтального ребра вертикального объёма с вертикальной плоскостью центральной фигуры. Граница тени построена.
Принцип построения теней от объекта остается таким же, как и в ортогональных проекциях. Через вершину каждого ребра проводим луч, под заданным углом наклона, до пересечения его с проекцией, проведённой через нижнюю точку ребра. Вершины тени соединяем прямыми, параллельными горизонтальным рёбрам и направленными в точки схода на линии горизонта. Предмет к зрителю будет обращён частично освещённой и теневой стороной.
Если объект имеет сложную форму (состоит из разных объемов), то в этом случае падающая тень будет расположена не только на предметной плоскости, но и на самом объекте.
Рассмотрим пример построения падающих теней от фигуры, состоящей из трёх разновеликих объемов.
Начнём с построения тени от вертикального объёма. Через верхнюю точку ближнего ребра проводим луч под заданным углом наклона. Проекцию этого луча проводим через нижнюю точку ребра, параллельно основанию картины, до нижней грани вертикальной плоскости центральной фигуры. По этой плоскости проводим прямую вертикально вверх до её пересечения с лучом. Найденную точку соединяем с точкой пересечения горизонтального ребра вертикального объёма с вертикальной плоскостью центральной фигуры. Граница тени построена.
Построение теней от сложной фигуры, когда солнце расположено в промежуточном пространстве.
Приступаем к построению падающей тени от центральной фигуры. Вначале строим падающую тень на предметную плоскость, игнорируя невысокий примыкающий объём. В точке пересечения следа луча от ближнего вертикального ребра центральной фигуры с вертикальной плоскостью малой фигуры проводим проекцию вертикально вверх. После того, как она пересечёт верхнее ребро малой фигуры, продолжим проекцию параллельно основанию картины до пересечения с лучом. От этой точки граница тени на горизонтальной плоскости малой фигуры будет направлена в точку схода F2,лежащую на линии горизонта. Строим падающую тень от малой фигуры на предметную плоскость.
1. Солнце расположено в мнимом пространстве, то есть находится сзади от зрителя. Солнечные лучи представляют собой нисходящие параллельныепрямые. Точка схода лучейSнаходится ниже линии горизонта настолько, насколько солнце предполагается выше него. Точка сходаS1 их горизонтальных проекций находится на линии горизонта. Все видимые части предмета освещены. Тени направлены в глубину от зрителя.
Для построения тени от отрезка АВ проводим через точкуSсветовой луч в точку А. Проекцию луча света проводим в точку схода S1 через точку В, с которой совпадает проекция освещённой точки А. Точка их пересеченияВ0задаётвеличину тени.
Построение теней от предметов, когда солнце расположено в мнимом пространстве.
Построим тень от треугольной пластины на произвольную плоскость ЕВМ. Через точку А проводим горизонтально-проектирующую лучевую плоскость. Горизонтальный след плоскости а S1 пересекает перспективу плана плоскости по линии а30, а перспективу самой плоскости пересекает по прямой 13. Пересечение этой прямой с лучом АSдаёт вершину тени А1. Точка А0 является фиктивной тенью на предметной плоскости. В точках 12 тень с земли переходит на наклонную плоскость. Из точкиS проводим световой луч в точку В. Из точки К проводим проекцию светового луча в точку схода S1 и её пересечение со световым лучом отметит точку В0. Проведя отрезок ЕВ0, построим границу тени от вертикальной плоскости ЕВК. Из точки В0 граница тени будет проходить параллельно горизонтальному ребру ВМ, то есть направлена в точку сходаF1. Тень построена.
Построение тени от треугольной пластины на произвольную плоскость, когда солнце расположено в мнимом пространстве.
Источник