Меню

Что такое протон протонный цикл как он связан солнце

Солнце

Протон-протонная цепочка (водородный цикл)

Схема этого процесса изображена на рисунке. Два протона сталкиваются друг с другом и сливаются. При этом вылетают позитрон и нейтрино. Образовавшееся ядро состоит уже из одного протона и одного нейтрона. Это ядро имеет такой же заряд, как и ядро водорода, но оно в два раза тяжелее. Такой изотоп тяжёлого водорода называют дейтерием. Если ядро водорода столкнется с ядром дейтерия, то они объединяются в атом гелия, который состоит из двух протонов и одного нейтрона. Такое ядро гелия не является «пра́вильным» гелием. Это — лёгкий изотоп Не 3 . Заряд его ядра совпадает с зарядом ядра гелия, а массовое число на единицу меньше. Если теперь два таких ядра «легкого» гелия столкнутся друг с другом, то при этом образуются «пра́вильное» ядро гелия и два протона. В этой цепи реакций тоже происходит в конечном счете объединение четырех протонов с образованием одного ядра гелия.

Реакции протон-протонной цепо́чки начинаются со столкновения двух протонов, а заканчивается эта цепочка тоже образованием двух протонов. Поэтому у неё есть и другое название — водородный цикл.

Какой же из двух процессов протекает в недрах звезд: углеродный цикл или протон-протонная цепочка? При достаточно высоких температурах в звёздах могут протекать оба процесса. При температуре 10 миллионов градусов происходят в основном реакции протон-протонной цепо́чки. Если температура существенно выше, то будет преобладать выделение энергии за счёт углеродного цикла. Реакции протон-протонной цепо́чки были, по всей видимости, особенно важны при образовании первых звёзд, возникших в нашей Вселенной, во время так называемого Большого взрыва, образовались только я́дра водорода и гелия. Поэтому в первых звездах не было элементов-катализаторов, необходимых для работы углеродного цикла. Следовательно, их существование должно было поддерживаться за счет реакций протон-протонной цепо́чки. Я́дра углерода возникли в недрах звезд позже из ядер гелия. Этот процесс мы сейчас и рассмотрим.

Только после образования ядер углерода в последующих поколениях звёзд появились элементы-катализаторы, которые необходимы для реакций углеродного цикла.

Здесь показано, как два ядра водорода сталкиваются и образуют ядро дейтерия.

Для осуществления цикла реакций с участием углерода, о которых шла речь в предыдущем разделе, требуется некоторое количество углерода или азота. При этом сами атомы углерода или азота не участвуют в превращениях, они служат как бы «оболочкой», в которой с течением времени я́дра водорода постепенно сливаются в я́дра гелия. Однако в 1938 году Ганс Бете и Чарльз Кричфилд показали, что образование гелия из водорода может происходить и без участия углерода или азота.

Здесь показано, как ядро дейтерия и ядро водорода объединяются в ядро изотопа гелия. При столкновении двух ядер этого изотопа гелия образуется нормальный гелий с массовым числом 4.

Возникновение более тяжелых элементов

Что происходит в звезде, когда весь водород превратится в гелий? Эдвин Сальпетер, из Корнельского университета в США, показал, как гелий может превращаться в углерод. Вообще говоря, для этого превращения достаточно трех ядер гелия. Если эти я́дра объединятся, то возникнет ядро углерода с массовым числом 12. Однако одновременное столкновение трёх ядер гелия практически невероятно. Более вероятен процесс, который идёт в две стадии (см. рис.). При этом вначале объединяются два ядра гелия и образуется ядро элемента бериллия с массовым числом 8. Этот изотоп бериллия радиоактивен. Возникшее ядро бериллия существует чрезвычайно короткое время, которое даже трудно себе представить. Спустя несколько десятимиллионных частей одной миллиардной доли секунды это ядро снова распадается на два ядра гелия, из которых оно возникло. Но если за этот короткий промежуток времени ядро изотопа бериллия столкнется с третьим атомом гелия, то возникнет устойчивое ядро углерода. Я́дра изотопа Be 8 распадаются значительно чаще, чем происходят их столкновения с третьим атомом гелия. Однако в звёздном веществе с температурой 100 миллионов градусов такие превращения происходят настолько часто, что освобождающаяся энергия может поддерживать постоянную температуру звезды и её излучение.

Читайте также:  Море солнце песок фразы

Превращение гелия в углерод

Превращение гелия в углерод

Два ядра гелия сливаются с образованием чрезвычайно радиоактивного ядра бериллия, которое очень скоро снова распадется на два ядра гелия. Ядро изотопа бериллия превращается в ядро углерода (с испусканием кванта света) только в том случае, если за короткое время жизни изотопа Be произойдет его столкновение с ещё одним ядром гелия.

Что происходит дальше? При ещё более высоких температурах могут объединяться атомы углерода. После объединения они распадаются разными способами на я́дра таких элементов, как магний, натрий, неон и кислород. Атомы кислорода могут объединяться с образованием ядер серы и фосфора. Так образуются всё более тяжелые атомные я́дра. Возникает вопрос, могут ли в недрах звёзд постепенно образовываться из водорода и гелия все химические элементы? Теория развития звёзд утверждает, что нет.

Примечание автора сайта:
Оказывается, в природе превращения элементов заканчиваются на железе. Мы уже знаем, что чем тяжелее элемент, получающийся в результате термоядерной реакции, тем ниже выделяемая энергия. Когда превращения доходят до желе́за, ядерный реактор звезды останавливается. При слиянии ядра желе́за с ядрами других элементов, имеющихся в звезде, энергия уже не выделяется: наоборот, для этого требуется дополнительная энергия. И напротив, чтобы расколоть ядро желе́за, требуется затратить энергию. Причина этого заключается в одном из свойств атомных ядер. Я́дра тяжелых элементов (например, урана) при делении выделяют энергию, а в результате деления появляются я́дра, масса которых близка к атомной массе более легкого желе́за. При соединении легких элементов выделяется энергия, и в результате получаются я́дра, масса которых ближе к массе тяжелого желе́за. Только из ядер желе́за нельзя получить энергию ни путем деления, ни путем синтеза. Вопрос об образовании химических элементов будет рассматриваться нами в разделе «Звезды».

Источник

Протон-протонный цикл

  • Термоядерная реакция
    • Протон-протонный цикл
    • CNO-цикл
    • Тройной альфа-процесс
    • Гелиевая вспышка
    • Горение углерода
    • Углеродная детонация
    • Горение неона
    • Горение кремния
  • Нейтронный захват
    • r-процесс
    • s-процесс
  • Захват протонов:
    • p-процесс
    • rp-процесс
  • Нейтронизация
  • Реакции скалывания

Протон-протонный цикл — совокупность термоядерных реакций, в ходе которых водород превращается в гелий в звёздах, находящихся на главной звездной последовательности, основная альтернатива CNO-циклу. Протон-протонный цикл доминирует в звёздах с массой порядка массы Солнца или меньше. Цикл принято делить на три основных цепочки: ppI, ppII, ppIII. Существенный вклад в энерговыделение вносят только первые две. Оставшиеся превращения существенны только при точном подсчёте количества высокоэнергичных нейтрино.

Содержание

Продукты протон-протонного цикла

Конечным продуктом цепочки ppI, доминирующей при температурах от 10 до 14 миллионов градусов, является ядро атома гелия, возникшее в результате слияния четырех протонов с выделением энергии, эквивалентной 0,7 % массы этих протонов. Цикл включает в себя три стадии. Вначале два протона, имеющие достаточно энергии, чтобы преодолеть кулоновский барьер, сливаются, образуя дейтрон, позитрон и электронное нейтрино; затем дейтрон сливается с протоном, образуя ядро 3 He; наконец, два ядра атома гелия-3 сливаются, образуя ядро атома гелия-4. При этом высвобождаются два протона.

  • p + p → ²D + e + + νe + 0,4 МэВ
  • ²D + p → 3 He + γ + 5,49 МэВ.
  • 3 He + 3 He → 4 He + 2 p + 12,85 МэВ.

Другие две цепочки (ppII и ppIII) вносят вклад в цикл при более высоких температурах, чем ppI. На Солнце около 85 % слияний водорода в гелий-4 происходят через ppI.

Время, через которое Солнце израсходует своё «топливо» и термоядерная реакция прекратится, оценивается в 6 миллиардов лет.

pep-Реакция

В некоторых случаях (на Солнце 0,25 %, или в одной реакции из 400) слияние протонов в ядро дейтерия происходит не с эмиссией позитрона, а с поглощением электрона. Это слияние двух протонов и электрона называется pep-реакцией (по частицам в начальном состоянии); в ней излучается моноэнергетическое нейтрино с энергией 1,44 МэВ .

Читайте также:  Навстречу солнцу into the sun

hep-Реакция

Обычно ядро гелия-3, образовавшееся во второй реакции pp-цикла после слияния дейтрона и протона, реагирует с другим ядром 3 He (ветвь ppI, 85 % в условиях Солнца) или 4 He (ветви ppII и ppIII, суммарно около 15 % на Солнце). В очень редких случаях (10 −5 % на Солнце) 3 He захватывает протон с образованием ядра гелия-4, позитрона и электронного нейтрино. Эта так называемая hep-реакция (название от He+p) редка, так как она происходит посредством слабого взаимодействия — один из трёх протонов, имеющихся в начальном состоянии, должен превратиться в нейтрон — в то время как конкурирующие реакции 3 He+ 3 He и 3 He+ 4 He, несмотря на более высокий кулоновский барьер, не связаны с изменением заряда нуклонов.

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое «Протон-протонный цикл» в других словарях:

протон-протонный цикл — protoninis protoninis ciklas statusas T sritis fizika atitikmenys: angl. proton proton chain vok. Proton Proton Kettenreaktion, f; Wasserstoffzyklus, m rus. протон протонный цикл, m pranc. chaîne proton proton, f … Fizikos terminų žodynas

Протонный распад — Ядерные процессы Радиоактивный распад Альфа распад Бета распад Кластерный распад Двойной бета распад Электронный захват Двойной электронный захват Гамма излучение Внутренняя конверсия Изомерный переход Нейтронный распад Позитронный распад… … Википедия

Цикл Бете — Ядерные процессы Радиоактивный распад Альфа распад Бета распад Кластерный распад Двойной бета распад Электронный захват Двойной электронный захват Гамма излучение Внутренняя конверсия Изомерный переход Нейтронный распад Позитронный распад… … Википедия

CNO-цикл — Ядерные процессы Радиоактивный распад Альфа распад Бета распад Кластерный распад Двойной бета распад Электронный захват Двойной электронный захват Гамма излучение Внутренняя конверсия Изомерный переход Нейтронный распад Позитронный распад… … Википедия

Углеродно-азотный цикл — Ядерные процессы Радиоактивный распад Альфа распад Бета распад Кластерный распад Двойной бета распад Электронный захват Двойной электронный захват Гамма излучение Внутренняя конверсия Изомерный переход Нейтронный распад Позитронный распад… … Википедия

Углеродный цикл — Ядерные процессы Радиоактивный распад Альфа распад Бета распад Кластерный распад Двойной бета распад Электронный захват Двойной электронный захват Гамма излучение Внутренняя конверсия Изомерный переход Нейтронный распад Позитронный распад… … Википедия

ВОДОРОДНЫЙ ЦИКЛ — (протон протонный цикл) последовательность термоядерных реакций в звёздах, приводящая к превращению водорода в гелий без участия катализаторов. В. ц. осн. источник энергии норм. однородных звёзд, в частности Солнца. Последовательность реакций В.… … Физическая энциклопедия

Звёздный нуклеосинтез — Ядерные процессы Радиоактивный распад Альфа распад Бета распад Кластерный распад Двойной бета распад Электронный захват Двойной электронный захват Гамма излучение Внутренняя конверсия Изомерный переход Нейтронный распад Позитронный распад… … Википедия

Капельная модель ядра — Ядерная физика … Википедия

Атомное ядро — Ядерная физика … Википедия

Источник

Нейтрино показали главный источник энергии Солнца. На 99% это протон-протонные реакции

Фотография детектора Borexino

The Borexino collaboration / Nature

Группа Borexino выполнила самые точные измерения спектра солнечных нейтрино и подтвердила, что 99 процентов солнечной энергии производится в реакциях протон-протонного цикла, а также показала, что гипотеза высокой солнечной металличности подтверждается со статистической значимостью около 2 сигма. Для этого физики семь лет наблюдали за нейтрино с помощью детектора Borexino, заполненного 300 тоннами сверхчистого сцинтиллятора. Статья опубликована в Nature.

Большая часть энергии, которую производит Солнце, приходится на реакции протон-протонного цикла, в ходе которых ядра водорода превращаются в ядра гелия (примерно два процента можно объяснить реакциями CNO-цикла). Как правило, цикл начинается со слияния двух протонов и последующего бета-распада дипротона, в результате которого образуется ядро дейтерия, позитрон, и электронное нейтрино. Гораздо реже — примерно в 0,25 процентах случаев — дейтрон и нейтрино рождаются при столкновении двух протонов и электрона (pep-реакция). Затем ядро дейтерия поглощает еще один протон, превращается в ядро гелия-3 и испускает фотон.

Читайте также:  Можно ли ахромин использовать как защитный крем от солнца

После этого реакции могут пойти по одному из четырех сценариев. Во-первых, с вероятностью около 85 процентов ядра гелия-3 превращаются в ядро гелия-4 (ветвь ppI). Во-вторых, в 15 процентах случаев образование ядер гелия-4 происходит с участием промежуточных ядер лития-7 и бериллия-7 (ветвь ppII). В-третьих, с вероятностью около 10 −5 в ходе промежуточных реакций могут образоваться ядра бериллия-8 (ветвь ppIII). Наконец, очень редко (вероятность порядка 10 −7 ) ядро гелия-3 может поглотить протон и превратиться в ядро гелия-4 (hep-реакция). В среднем в ходе реакций выделяется около 18 мигаэлектронвольт энергии. Впервые эту модель предложили в 1937 году физики Георгий (Джордж) Гамов и Карл Вайцзекер (Carl Weizsäcker), а в дальнейшем ее развили Ханс Бете (Hans Bethe) и Чарльз Критчфилд (Charles Critchfield).

Протон-протонный цикл (слева) и CNO-цикл (справа). Цветом выделены реакции, в которых рождаются нейтрино

The Borexino collaboration / Nature

Спектр нейтрино из реакций протон-протонного и CNO-цикла. Цвета соответствуют предыдущей схеме

The Borexino collaboration / Nature

Поэтому долгое время ученые не могли поймать солнечные нейтрино, а потом долго не могли подробно изучить их свойства, поскольку набранная статистика была слишком маленькой. Несмотря на то, что к настоящему времени за исследования солнечных нейтрино вручены две Нобелевские премии по физике (2002 и 2015 года), а некоторые работы сообщали о регистрации нейтрино отдельных реакций протон-протонного цикла, полностью восстановить цикл ученым до сих пор не удавалось.

Группа Borexino, в которую входят, в том числе российские физики, наконец закрыла этот пробел, одновременно измерив нейтрино от всех реакций протон-протонного цикла, в которых они рождаются. Кроме того, с помощью собранных данных ученые проверили Стандартную Солнечную Модель — основную теоретическую модель, которая используется для описания происходящих на Солнце процессов. Для этого ученые использовали детектор Borexino — нейлоновую сферу диаметром 8,5 метров, которая заполнена 300 тоннами сверхчистого жидкого сцинтиллятора (псевдокумола) и просматривается 2200 фотоумножителями.

Когда нейтрино сталкивается с ядром сцинтиллятора, в нем выделяется небольшое количество энергии и рождаются фотоэлектроны, а фотоумножители отслеживают эти процессы. Чтобы снизить фоновое загрязнение от космических частиц, ученые установили детектор в подземной Лаборатории Гран-Сассо, расположенной на глубине 1400 метров. От распадов радиоактивных элементов, которые содержатся в горных породах, детектор защищает слой сверхчистой воды. Кроме того, сцинтиллятор очищен от радиоактивных элементов: в одном его грамме содержится менее 10 −19 грамм урана-238 и 10 −18 грамм тория-232. Благодаря этим мерам детектор может регистрировать нейтрино с энергиями вплоть до 0,2 мегаэлектронвольт, а его чувствительность превышает чувствительность любого другого нейтринного детектора (например, SuperKamiokande или SNO). Суммарно детектор Borexino проработал около 2000 дней (семь лет).

В результате ученые измерили энергетический спектр нейтрино, которые рождаются во всех пяти реакциях протон-протонного цикла, уточнили результаты предыдущих измерений и сделали несколько открытий. Во-первых, физики впервые измерили поток «бериллиевых» нейтрино, причем погрешность измерений составила около трех процентов, что в два раза меньше погрешности теоретических предсказаний Стандартной Солнечной модели. Во-вторых, со статистической значимостью около 5 сигма ученые подтвердили, что на Солнце идут pep-реакции (в результате которых сливаются два протона и электрон). Ранее статистическая значимость этой гипотезы была гораздо ниже. В-третьих, исследователи уточнили на 8 процентов скорость «борной» реакции из канала pepIII и других процессов.

Измеренный на практике спектр электронных нейтрино

Источник

Adblock
detector