Меню

Что такое корпускулярные потоки от солнца

КОРПУСКУЛЯРНОЕ И ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ СОЛНЦА И ИХ ПРОЯВЛЕНИЕ НА ЗЕМЛЕ

КОРПУСКУЛЯРНОЕ ИЗЛУЧЕНИЕ СОЛНЦА

Различают два вида излучения Солнца: корпускулярное и электромагнитное. Корпускулярное излучение представляет собой излучение звездой корпускул или заряженных частиц ( в основном протоны и электроны). Перенос этих частиц в космосе происходит посредством солнечного ветра ( поток частиц, имеющих разную плотность, направление движения и скорость). Солнечный ветер может усиливаться во время вспышек на Солнце или же во время возникновения на звезде корональных дыр. Солнечный ветер вызывает возмущение магнитного поля Земли и может представляет прямую угрозу для работы электроники, связи и спутников, а также для людей опосредованно через магнитные бури

(спорно). Корпускулярное излучение задерживается магнитным полем Земли, которое отклоняет большую часть частиц к магнитным полюсам. Скорость движения от 300 до 1,2 тыс.км/сек.

ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ СОЛНЦА

Включает 6 из 7 видов электромагнитного излучения, среди которого радиоизлучение, микроволновое, инфракрасное, оптическое, ультрафиолетовое и рентгеновское. Гамма излучение Солнца до его поверхности не доходит. Скорость движения равна скорости света

300 тыс.км/сек. Рентгеновское и гамма излучение ( фотоны высоких энергий) является губительными для жизни и полностью задерживается атмосферой Земли, принято говорить, что атмосфера для такого излучения непрозрачна. Для изучения гамма и рентгеновского излучений телескопы выведены на орбиту Земли. Значительное усиление рентгеновского и радиоизлучения наблюдается во время солнечных вспышек, когда наблюдается увеличение скорости движения элементарных частиц (корпускул). Источником радиоизлучения являются раскаленные газы на поверхности Солнца. Излучение усиливается во время солнечных вспышек и может нарушать радиосвязь на некоторых частотах на освещенной части Земли.

Ультрафиолетовое излучение также блокируется атмосферой Земли и озоном, который образуется при взаимодействии кислорода под действием ультрафиолета на высотах около 25 км, но не полностью, часть этого излучения все же доходит до поверхности Земли и проявляется на теле человека в виде накопления меланина (загар). Видимое излучение Солнца представлено в виде света, который мы можем видеть. Не представляет для человека никакой угрозы, разве что, если смотреть на яркое Солнце днем без очков. Инфракрасное излучение Солнца проявляется в виде его способности нагревать предметы.

Источник

Невидимые бури

Магнитные силы и магнитное поле, то есть область пространства, где эти силы проявляются, наш глаз не видит. Но действия этих сил легко сделать видимыми.

Вспомните простой школьный опыт. Если на линейный магнит положить лист бумаги и насыпать на нее мелкие металлические опилки, последние расположатся по линиям действия магнитных сил, или, как говорят, силовым линиям. Получится весьма наглядное изображение магнитного поля.

Наша Земля подобна металлическому намагниченному шару. Пока не вполне ясно, какая причина порождает земной магнетизм. Скорее всего в этом повинны те электрические токи, которые постоянно циркулируют в электропроводящем ядре Земли. Так или иначе, но земной шар проявляет себя как исполинский магнит. Как и у всякого магнита, у Земли есть два магнитных полюса. Южный находится на северо-западной оконечности Гренландии, северный — в Антарктиде.

Ось вращения Земли, как известно, не совпадает с ее магнитной осью, то есть с прямой, проходящей через магнитные полюсы земного шара. Угол между ними близок к 11,5°, но это не мешает путешественникам и мореплавателям с давних пор ориентироваться по компасу.

Кстати о компасе. В обычном состоянии, без внешних помех, его стрелка, слегка поколебавшись, устанавливается в направлении магнитного меридиана. Но попробуйте поднести магнит к компасу — тотчас же спокойствие стрелки нарушится, и ориентироваться по компасу в такой ситуации не удастся. Эти всем знакомые явления похожи на те невидимые магнитные бури, о которых и пойдет речь.

Слово «буря» у нас невольно связывается с представ­лениями о каких-то мощных ураганах, ливнях или смер­чах. Магнитная буря — событие куда менее эффектное. Оно выражается в том, что внезапно стрелка компаса начинает беспорядочно колебаться, и показания этого прибора становятся ненадежными. Так продолжается несколько часов, реже сутки, а затем стрелка компаса «успокаивается» до очередной магнитной бури.

На магнитные бури ученые обратили внимание еще в XVIII веке, но только в 1850 году французский астроном Ламонт заметил, что эти явления природы тесно связаны с солнечными пятнами. Кстати сказать, это было первое открытие связи земных явлений с солнечной активностью.

Ныне твердо установлено, что всякий раз, когда крупная группа солнечных пятен проходит через центральный солнечный меридиан, спустя примерно сутки, на Земле разыгрываются магнитные бури. В частоте магнитных бурь есть и 27-дневная и 11-летняя периодичность. Во всем этом явно замешано Солнце. Но как оно действует на земную магнитосферу?

Мы уже говорили, что каждое крупное солнечное пятно, а тем более большая группа пятен — это центр, очаг солнечной активности. Именно из таких районов Солнца при солнечных вспышках и других подобных процессах «выстреливаются» в пространство корпускулярные потоки.

Центральным меридианом Солнца называют тот его меридиан, плоскость которого в данный момент проходит через земного наблюдателя.

Корпускулярный поток и Земля.

Каждый подобный поток в целом — электрически нейтральная смесь ядер атомов и электронов, то есть плазма. А плазма — отличный проводник электричества. Если корпускулы непрерывной струей выбрасываются в пространство, то струя с удалением от Солнца искривляется по законам механики в сторону, обратную направлению вращения Солнца. Картина эта напоминает отклонение водяных струй в декоративных фонтанах с вращающимся водометом.

В тысячу раз быстрее пули (со скоростью около 1000 км/сек) удаляются корпускулярные потоки от Солнца. Некоторые из них, «нацеленные» на земной шар, то есть выброшенные из района пятен, близких к центральному солнечному меридиану, примерно на вторые сутки достиг­нут окрестностей Земли. Тут они прежде всего встретят самую внешнюю из земных оболочек — земную магнитосферу.

Вспомните, если проводник перемещать вблизи магнита, но проводнику потечет электрический ток. Так утверждает простой школьный опыт. То же самое случится и с корпускулярным потоком. В этом облаке плазмы при его движении в магнитном поле Земли также потечет электрический ток.

Но всякий ток в свою очередь порождает магнитное поле, и это демонстрируется на уроках физики в школе.

Значит, вокруг корпускулярного потока возникнет собственное магнитное поле, которое изменит магнитное поле Земли. Стрелка компаса начнет колебаться, как если бы к ней поднесли школьный магнит. А это и есть магнитная буря.

Как видите, связь солнечных пятен и магнитных бурь ничего таинственного в себе не заключает. Цепь причин и следствий здесь совершенно ясна, что, к сожалению, не всегда можно сказать о других, более сложных солнечно-земных связях.

Не будь Солнца, магнитное поле Земли имело бы симметричное строение. Из-за воздействия корпускулярных потоков и солнечного ветра оно всегда искажено, и тем сильнее, чем выше солнечная активность. Это сказывается и на форме радиационного пояса Земли — скоплений протонов и электронов, открытых в 1958 году в космических окрестностях Земли.

Для электрически заряженных частиц магнитное поло Земли — коварная ловушка. Некоторые из протонов и электронов, частично приходящих от Солнца, частично образующихся в верхних слоях атмосферы, попадают в эту ловушку. Под действием магнитных сил они начинают колебаться вдоль силовых линий земного магнитного поля. Так продолжается до тех пор, пока, растратив энергию, частица не падает на Землю. Но на место «вышедших из игры» частиц приходят новые, и потому радиационный пояс Земли существует постоянно, находясь, как говорят физики, в динамическом равновесии.

Читайте также:  После солнца кружилась голова

Магнитное поле Земли.

Радиационный пояс Земли.

Различают две зоны — внутреннюю и внешнюю. Как исполинские бублики, нависают они над экватором нашей планеты. Сердцевина внутренней, протонной зоны находится на высоте 3000 км. Средний радиус внешней, электронной зоны в семь раз больше.

Рисунок не вполне точен. Так выглядел бы радиационный пояс Земли, если бы не было Солнца. Солнечный ветер, этот непрерывный поток намагниченной плазмы, сжимает магнитосферу на дневной стороне Земли и, наоборот, вытягивает ее в области земной тени. Следуя за магнитосферой, точно так же искажается и радиационный пояс Земли. Эта асимметрия усиливается, когда очередной корпускулярный поток достигает окрестностей земного шара. В дни и годы повышенной активности Солнца и магнитосфера и, соответственно, радиационный пояс Земли искажаются особенно сильно. На ночной стороне Земли тогда возникает нечто вроде протонно-электронного хвоста, и Земля приобретает некоторое сходство с кометой.

Самые внешние оболочки Земли оказались очень чувствительными ко всем изменениям солнечной активности. Но это свойственно и всей планете в целом.

Источник

Корпускулярные излучения — потоки частиц

Корпускулярные излучения — потоки частиц — отличаются наличием массы покоя. Заряженные частицы при взаимодействии с веществом постепенно расходуют свою энергию по мере ионизации и возбуждения атомов вплоть до полного торможения. В конце пробега, когда скорость частицы падает, возрастает плотность ионизации (так называемый пик Брэгга). Треки электронов извилисты, изломаны (за счет отталкивания электронными оболочками атомов), протонов и более тяжелых ядер — прямолинейны. Величина ЛПЭ ионизирующей частицы целиком зависит от ее скорости (энергии) и заряда и практически не зависит от ее массы или физической природы. ЛПЭ рентгеновских лучей с энергией 250 КэВ составляют 2 КэВ/мкм, гамма-лучей 60Со — 0,3 КэВ/мкм. У тяжелых заряженных частиц ЛПЭ от 100 до 2000 КэВ/мкм, а у лишенных заряда нейтронов с энергией 14 МэВ — 12 КэВ/мкм. Редкоиопизирующие излучения (рентгеновские, гамма-лучи, электроны) имеют значения ЛПЭ менее 10 КэВ/мкм, а плотноионизирующие — более этой величины.

В отличие от заряженных частиц незаряженные нейтроны легко проникают в глубь вещества. Они непосредственно не вызывают образования ионов, однако их отнесение к ионизирующей радиации правомерно: сталкиваясь с ядрами вещества, нейтроны либо отталкиваются, отскакивают от них, отдавая часть энергии (и превращая их во вторично ионизирующие частицы), либо поглощаются ядром, вызывая ядерные реакции. При упругом соударении с протонами (ядрами водорода) нейтроны отдают сразу около половины своей энергии; а с ядрами углерода, азота, кислорода и других элементов биологических тканей — лишь 10— 15 % энергии. Поэтому наилучшими поглотителями нейтронов являются вещества, содержащие много водорода,— вода, парафин (их используют для защиты от нейтронов), а протоны отдачи играют главную роль в ионизирующем действии потоков нейтронов.

Сильно замедляясь, нейтроны поглощаются ядрами вещества, превращая их в искусственно-радиоактивные ядра. В результате выброса ими протонов, альфа-частиц и гамма-квантов также развивается ионизация.

Таким образом, и при нейтронном облучении биологический эффект обусловлен ионизацией, хотя и носящей вторичный, опосредованный характер. Быстрые нейтроны, с энергией более 100 КэВ, возникают в реакции деления ядер урана-235 (и, стало быть, при ядерных взрывах и в атомных реакторах) и калифорния-252, а также в ускорителях.

Источник

Строение, излучение и эволюция солнца

Солнце (астр. ☉) – единственная звезда Солнечной системы. Вокруг Солнца обращаются другие объекты этой системы: планеты и их спутники, карликовые планеты и их спутники, астероиды, метеороиды, кометы и космическая пыль.

Внутреннее строение Солнца

Наше Солнце – это огромный светящийся газовый шар, внутри которого протекают сложные процессы и в результате непрерывно выделяется энергия. Внутренний объем Солнца можно разделить на несколько областей; вещество в них отличается по своим свойствам, и энергия распространяется посредством разных физических механизмов. Познакомимся с ними, начиная с самого центра.

В центральной части Солнца находится источник его энергии, или, говоря образным языком, та «печка», которая нагревает его и не дает ему остыть. Эта область называется ядром. Под тяжестью внешних слоев вещество внутри Солнца сжато, причем, чем глубже, тем сильнее. Плотность его увеличивается к центру вместе с ростом давления и температуры. В ядре, где температура достигает 15 млн. кельвинов, происходит выделение энергии.

Эта энергия выделяется в результате слияния атомов легких химических элементов в атомы более тяжелых. В недрах Солнца из четырех атомов водорода образуется один атом гелия. Именно эту страшную энергию люди научились освобождать при взрыве водородной бомбы. Есть надежда, что в недалеком будущем человек сможет научиться использовать ее и в мирных целях (в 2005 году новостные ленты передавали о начале строительства первого международного термоядерного реактора во Франции).

Ядро имеет радиус не более четверти общего радиуса Солнца. Однако в его объеме сосредоточена половина солнечной массы и выделяется практически вся энергия, которая поддерживает свечение Солнца. Но энергия горячего ядра должна как-то выходить наружу, к поверхности Солнца. Существуют различные способы передачи энергии в зависимости от физических условий среды, а именно: лучистый перенос, конвекция и теплопроводность. Теплопроводность не играет большой роли в энергетических процессах на Солнце и звездах, тогда как лучистый и конвективный переносы очень важны.

Сразу вокруг ядра начинается зона лучистой передачи энергии, где она распространяется через поглощение и излучение веществом порции света – квантов. Плотность, температура и давление уменьшаются по мере удаления от ядра, и в этом же направлении идет поток энергии. В целом процесс этот крайне медленный. Чтобы квантам добраться от центра Солнца до фотосферы, необходимы многие тысячи лет: ведь, переизлучаясь, кванты все время меняют направление, почти столь же часто двигаясь назад, как и вперед.

В центре Солнца рождаются гамма-кванты. Их энергия в миллионы раз больше, чем энергия квантов видимого света, а длина волны очень мала. По дороге кванты претерпевают удивительные превращения. Отдельный квант сначала поглощается каким-нибудь атомом, но тут же снова переизлучается; чаще всего при этом возникает не один прежний квант, а два или несколько. По закону сохранения энергии их общая энергия сохраняется, а потому энергия каждого из них уменьшается. Так возникают кванты все меньших и меньших энергий. Мощные гамма-кванты как бы дробятся на менее энергичные кванты – сначала рентгеновских, потом ультрафиолетовых и

наконец видимых и инфракрасных лучей. В итоге наибольшее количество энергии Солнце излучает в видимом свете, и не случайно наши глаза чувствительны к нему.

Как мы уже говорили, кванту требуется очень много времени, чтобы просочиться через плотное солнечное вещество наружу. Так что если бы «печка» внутри Солнца вдруг погасла, то мы узнали бы об этом только миллионы лет спустя. На своем пути через внутренние солнечные слои поток энергии встречает такую область, где непрозрачность газа сильно возрастает. Это конвективная зона Солнца. Здесь энергия передается уже не излучением, а конвекцией.

Читайте также:  Сатурн трин солнце синастрия

Что такое конвекция?

Когда жидкость кипит, она перемешивается. Так же может вести себя и газ. Огромные потоки горячего газа поднимаются вверх, где отдают свое тепло окружающей среде, а охлажденный солнечный газ спускается вниз. Похоже, что солнечное вещество кипит и перемешивается. Конвективная зона начинается примерно на расстоянии 0,7 радиуса от центра и простирается практически до самой видимой поверхности Солнца (фотосферы), где перенос основного потока энергии вновь становится лучистым. Однако по инерции сюда все же проникают горячие потоки из более глубоких, конвективных слоев. Хорошо известная наблюдателям картина грануляции на поверхности Солнца является видимым проявлением конвекции.

Конвективная зона Солнца

Радиоактивная зона около 2/3 внутреннего диаметра Солнца, а радиус составляет около 140 тыс.км. Удаляясь от центра, фотоны теряют свою энергию под влиянием столкновения. Такое явление называют – феномен конвекции. Это напоминает процесс, происходящий в кипящем чайнике: энергии, поступающей от нагревательного элемента, намного больше того количества, которое отводится тепло проводимостью. Горячая вода, находящаяся в близости от огня, поднимается, а более холодная опускается вниз. Этот процесс называются конвенция. Смысл конвекции в том, что более плотный газ распределяется по поверхности, охлаждается и снова идет к центру. Процесс перемешивания в конвективной зоне Солнца осуществляется непрерывно. Глядя в телескоп на поверхность Солнца, можно увидеть ее зернистую структуру – грануляции. Ощущение такое, что оно состоит из гранул! Это связано с конвекцией, происходящей под фотосферой.

Фотосфера Солнца

Тонкий слой (400 км) – фотосфера Солнца, находится прямо за конвективной зоной и представляет собой видимую с Земли «настоящую солнечную поверхность». Впервые гранулы на фотосфере сфотографировал француз Янссен в 1885г. Среднестатистическая гранула имеет размер 1000 км, передвигается со скоростью 1км/сек и существует примерно 15 мин. Темные образования на фотосфере можно наблюдать в экваториальной части, а потом они сдвигаются. Сильнейшие магнитные поля, являются отличительно чертой таких пятен. А темный цвет получается вследствие более низкой температуры, относительно окружающей фотосферы.

Хромосфера Солнца

Хромосфера Солнца (цветная сфера) – плотный слой (10 000 км) солнечной атмосферы, который находится прямо за фотосферой. Хромосферу наблюдать достаточно проблематично, за счет ее близкого расположения к фотосфере. Лучше всего ее видно, когда Луна закрывает фотосферу, т.е. во время солнечных затмений.

Солнечные протуберанцы – это огромные выбросы водорода, напоминающие светящиеся длинные волокна. Протуберанцы поднимаются на огромные расстояние, достигающие диаметра Солнца (1.4 млм км), двигаются со скоростью около 300 км/сек, а температура при этом, достигает 10 000 градусов.

Солнечная корона

Солнечная корона – внешние и протяженные слои атмосферы Солнца, берущие начало над хромосферой. Длина солнечной короны является очень продолжительной и достигает значений в несколько диаметров Солнца. На вопрос где именно она заканчивается, ученые пока не получили однозначного ответа.

Состав солнечной короны – это разряженная, высоко ионизированная плазма. В ней содержатся тяжелые ионы, электроны с ядром из гелия и протоны. Температура короны достигает от 1 до 2ух млн градусов К, относительно поверхности Солнца.

Солнечный ветер – это непрерывное истечение вещества (плазмы) из внешней оболочки солнечной атмосферы. В его состав входят протоны, атомные ядра и электроны. Скорость солнечного ветра может меняться от 300 км/сек до 1500 км/сек, в соответствии с процессами, происходящими на Солнце. Солнечный ветер, распространяется по всей солнечной системе и, взаимодействуя с магнитным полем Земли, вызывает различный явления, одним из которых, является северное сияние.

Излучение Солнца

Солнце излучает свою энергию во всех длинах волн, но по-разному. Приблизительно 44% энергии излучения приходится на видимую часть спектра, а максимум соответствует желто-зеленому цвету. Около 48% энергии, теряемой Солнцем, уносят инфракрасные лучи ближнего и дальнего диапазона. На гамма-лучи, рентгеновское, ультрафиолетовое и радио излучение приходится лишь около 8%.

Видимая часть солнечного излучения при изучении с помощью спектроанализирующих приборов оказывается неоднородной – в спектре наблюдаются линии поглощения, впервые описанные Й.Фраунгофером в 1814 году. Эти линии возникают при поглощении фотонов определенных длин волн атомами различных химических элементах в верхних, относительно холодных, слоях атмосферы Солнца. Спектральный анализ позволяет получить информацию о составе Солнца, поскольку определенный набор спектральных линий исключительно точно характеризует химический элемент. Так, например, с помощью наблюдений спектра Солнца было предсказано открытие гелия, который на Земле был выделен позже.

Виды излучения

В ходе наблюдений ученые выяснили, что Солнце – мощный источник радиоизлучения. В межпланетное пространство проникают радиоволны, которые излучает хромосфера (сантиметровые волны) и корона (дециметровые и метровые волны). Радиоизлучение Солнца имеет две составляющие – постоянную и переменную (всплески, «шумовые бури»). Во время сильных солнечных вспышек радиоизлучение Солнца возрастает в тысячи и даже миллионы раз по сравнению с радиоизлучением спокойного Солнца. Это радиоизлучение имеет нетепловую природу.

Рентгеновские лучи исходят в основном от верхних слоев хромосферы и короны. Особенно сильным излучение бывает в годы максимума солнечной активности.

Солнце излучает не только свет, тепло и все другие виды электромагнитного излучения. Оно также является источником постоянного потока частиц – корпускул. Нейтрино, электроны, протоны, альфа-частицы, а также более тяжелые атомные ядра все вместе составляют корпускулярное излучение Солнца. Значительная часть этого излучения представляет собой более или менее непрерывное истечение плазмы – солнечный ветер, являющийся продолжением внешних слоев солнечной атмосферы – солнечной короны. На фоне этого постоянно дующего плазменного ветра отдельные области на Солнце являются источниками более направленных, усиленных, так называемых корпускулярных потоков. Скорее всего, они связаны с особыми областями солнечной короны – коронарными дырами, а также, возможно, с долгоживущими активными областями на Солнце. Наконец, с солнечными вспышками связанны наиболее мощные кратковременные потоки частиц, главным образом электронов и протонов. В результате наиболее мощных вспышек частицы могут приобретать скорости, составляющие заметную долю скорости света. Частицы с такими большими энергиями называются солнечными космическими лучами.

Солнечное корпускулярное излучение оказывает сильное влияние на Землю, и прежде всего на верхние слои ее атмосферы и магнитное поле, вызывая множество геофизических явлений. От вредного влияния излучения Солнца нас защищает магнитосфера и атмосфера Земли.

Интенсивность солнечного излучения

Имея крайне высокие температуры, Солнце является очень сильным источником излучения. Видимый диапазон солнечного излучения обладает наивысшей интенсивность излучения. При этом до Земли так же доходит большое количество невидимого спектра. Внутри Солнца протекают процессы, при которых из атомов водорода синтезируются атомы гелия. Это процессы называются процессами ядерного синтеза, они сопровождаются выделением огромного количества энергии. Эта энергия приводит к тому, что Солнце разогревается до температуры 15 миллионов градусов Цельсия (во внутренней его части).

На поверхности Солнца (фотосфере) температура достигает 5500 °С. На этой поверхности Солнце излучает энергию со значение 63 МВт/ м². До поверхности Земли доходит лишь немногая часть этого излучения, что позволяет комфортно существовать человечеству на нашей планете. Средняя интенсивность излучения на атмосферу Земли приблизительно равна 1367 Вт/м². Данное значение может колебаться в диапазоне 5% из-за того что, двигаясь по эллиптической орбите Земля отдаляется от Солнца на разное расстояние в течение года. Значение 1367 Вт/ м² называют солнечной постоянной.

Читайте также:  Когда встает солнце вам надо бежать

Солнечная энергия на поверхности Земли

Атмосфера Земли не пропускает всю солнечную энергию. Поверхности Земли достигает не более 1000 Вт/м2. Часть энергии поглощается, часть отражается в слоях атмосферы и в облаках. Большое количество излучения рассеивается в слоях атмосферы, вследствие чего образуется рассеянное излучение (диффузное). На поверхности Земли тоже часть излучения отражается и превращается в рассеянное. Сумма рассеянного и прямого излучения называется суммарным солнечным излучением. Рассеянное излучение может составлять от 20 до 60%.

На количество энергии, поступающее к поверхности Земли, так же влияет географическая широта и время года. Ось нашей планеты, проходящая через полюса, наклонена на 23,5° относительно орбиты вращения вокруг Солнца. В период с марта

до сентября солнечный свет больше попадает на Северное полушарие, в остальное время – Южное. Поэтому продолжительность дня в летнее и зимнее время разная. Широта местности та влияет на продолжительность светового дня. Чем Севернее, тем длиннее в летнее время и наоборот.

Эволюция Солнца

Предполагается, что Солнце родилось в сжавшейся газопылевой туманности. Есть, по крайней мере, две теории относительно того, что дало толчок первоначальному сжатию туманности. Согласно одной из них предполагается, что один из спиральных рукавов нашей галактики проходил через нашу область пространства примерно 5 млрд. лет назад. Это могло вызвать легкое сжатие и привести к формированию центров тяготения в газо-пылевом облаке. Действительно, сейчас вдоль спиральных рукавов мы видим довольно большое количество молодых звезд и светящихся газовых облаков. Другая теория предполагает, что где-то недалеко (по масштабам Вселенной, конечно) взорвалась древняя массивная сверхновая звезда. Возникшая ударная волна могла быть достаточно сильной, чтобы инициировать звездообразование в «нашей» газо-пылевой туманности. В пользу этой теории говорит то, что ученые, изучая метеориты, обнаружили довольно много элементов, которые могли образоваться при взрыве сверхновой.

Далее, когда столь грандиозная масса (2*1030кг) сжималась под действием сил гравитации, она сама себя сильно разогрела внутренним давлением до температур, при которых в ее центре смогли начаться термоядерные реакции. В центральной части температура на Солнце равна 15000000K, а давление достигает сотни миллиардов атмосфер. Так зажглась новорожденная звезда (не путайте с новыми звездами).

В основном Солнце в начале своей жизни состояло из водорода. Именно водород в ходе термоядерных реакций превращается в гелий, при этом выделяется энергия, излучаемая Солнцем. Солнце принадлежит к типу звезд, называемых желтыми карликами. Оно – звезда главной последовательности и относится к спектральному классу G2. Масса одинокой звезды довольно однозначно определяет ее судьбу. За время жизни (

5 миллиардов лет), в центре нашего светила, где температура достаточно высока, сгорело около половины всего имеющегося там водорода. Примерно столько же, 5 миллиардов лет, Солнцу осталось жить в таком виде, к которому мы с вами привыкли.

После того, как в центре светила водород будет на исходе, Солнце увеличится в размерах, станет красным гигантом. Это сильнейшим образом скажется на Земле: повысится температура, океаны выкипят, жизнь станет невозможной. Затем, исчерпав «топливо» совсем и не имея более сил держать внешние слои красного гиганта, наша звезда закончит свою жизнь как белый карлик, порадовав неведомых нам внеземных астрономов будущего новой планетарной туманностью, форма которой может оказаться весьма причудливой благодаря влиянию планет.

Смерть Солнца по времени

  • Уже через 1,1 млрд. лет, светило увеличит свою яркость на 10 %, что повлечет сильное нагревание Земли.
  • Через 3,5 млрд. лет, яркость увеличиться на 40%. Начнут испаряться океаны и наступит конец всему живому на Земле.
  • По прошествии 5,4 млрд. лет, в ядре звезды закончится топливо – водород. Солнце начнет увеличиваться в размерах, за счет разрежения внешней оболочки и нагрева ядра.
  • Через 7,7 млрд. лет, наша звезда превратиться в красного гиганта, т.к. увеличиться в 200 раз из-за этого будет поглощена планета Меркурий.
  • В конце, через 7,9 млрд. лет, внешние слои звезды настолько разредятся, что распадаться на туманность, а в центре бывшего Солнца будет маленький объект – белый карлик. Так закончит существование наша Солнечная система. Все строительные элементы, оставшиеся после распада, не пропадут, они станут основой для зарождения новых звезд и планет.

Интересные факты о звездах

  1. Наиболее распространенными звездами во вселенной являются красные карлики. По большей части это происходит из-за их низкой массы, что позволяет им жить в течение очень долгого времени, прежде чем превратиться в белых карликов.
  2. Почти все звезды во вселенной имеют одинаковый химический состав и реакция ядерного синтеза происходит в каждой звезде и является практически идентичной, определяясь лишь запасом топлива.
  3. Как мы знаем как и белый карлик, нейтронные звезды являются одним из конечных процессов эволюции звёзд, во многом возникая после взрыва сверхновой. Ранее зачастую тяжело было отличить белого карлика от нейтронной звезды, сейчас же ученые с помощью телескопов нашли различия в них. Нейтронная звезда собирает вокруг себя больше света и это легко увидеть с помощью инфракрасных телескопов. Восьмое место среди интересных фактов о звездах.
  4. Благодаря своей невероятной массе, согласно общей теории относительности Эйнштейна, черная дыра на самом деле, это изгиб пространства, таким образом, что все в пределах их гравитационного поля выталкивается к нему. Гравитационное поле черной дыры настолько сильно, что даже свет не может избежать ее.
  5. На сколько мы знаем когда у звезды заканчивается топливо, звезда может вырастать в размерах более чем в 1000 раз, далее она превращается в белого карлика, а из-за скорости реакции взрываются. Эта реакция более известна как сверхновая. Ученые предполагают, что в связи с этим долгим процессом и образуются, столь загадочные черные дыры.
  6. Многие звезды которые мы наблюдаем в ночном небе, могут казаться одним проблеском света. Однако это не всегда так. Большинство звезд, которые мы видим в небе на самом деле две звездные системы, или бинарные звездные системы. Они просто невообразимо далеко и нам кажется, что мы видим лишь одно пятнышко света.
  7. Звезды которые имеют самую короткую продолжительность жизни, являются наиболее массивными. Они представляют собой высокую массу химических веществ и как правило сжигают свое топливо гораздо быстрее.
  8. Не смотря на то что нам иногда кажется что Солнце и звезды мерцают, на самом деле это не так. Эффект мерцания является лишь светом от звезды, который в это время проходит через атмосферу Земли но еще не достиг наших глаз. Третье место среди самых интересных фактов о звездах.
  9. Расстояния, участвующие в оценке того, насколько далеко до звезды невообразимо огромны огромны. Рассмотрим пример: До ближайшая до земли звезда находится на расстоянии примерно 4.2 световых года, и что бы добраться до нее, даже на самом быстром нашем корабле, потребуется около 70 000 лет.
  10. Самая холодная известная звезда, это коричневый карлик «CFBDSIR 1458+10B» имеющий температуру всего около 100 °C. Самая горячая известная звезда, это голубой сверх гигант, находящийся в млечном пути под названием «Дзета Кормы» ее температура более 42 000 °C.

Видео

Источник

Adblock
detector