Меню

Что изучает химия солнца

—> Детская Энциклопедия —>

Химия Солнца

Трудно даже вообразить, что человек может изучить химию Солнца. Но наука сумела мно­гое сделать: мы знаем теперь химический состав Солнца, знаем (и знаем уже немало) о грандиоз­ных процессах — источниках солнечной энергии.

С помощью спектрального анализа было найдено на Солнце более шестидесяти элементов периодической системы Менделеева. Наверное, будут найдены и остальные.

Определены даже количественные соотно­шения между химическими элементами на Солн­це. Оказалось, что Солнце — это мир раскален­ного водорода. Водородных атомов там почти в пять раз больше, чем атомов гелия, ив тысячу раз больше, чем атомов всех остальных элемен­тов, вместе взятых.

Среди других элементов на Солнце преоб­ладают углерод, кислород и азот. Немало там и магния, алюминия, кремния, серы, желе­за. В меньшем количестве присутствуют калий, кальций, натрий, свинец и другие. Обнаружено даже несколько представителей редких земель; можно быть уверенным, что будут найдены и ос­тальные. Как и повсюду в мироздании, на Солнце преобладают легкие элементы, с малыми атом­ными номерами. Кроме того, как правило, элементов с четными порядковыми номерами на Солнце значительно больше, чем их соседей по периодической таблице с нечетными номерами.

Мало того, если не считать водорода и ге­лия, занимающих в мироздании вообще осо­бое положение, то наблюдается замечательное соответствие между относительным содержа­нием остальных элементов на Солнце и в ка­менных метеоритах (см. табл.).

Обнаружены на Солнце и простейшие хими­ческие соединения, молекулы которых способ­ны выдержать очень высокую температуру. Это не какие-нибудь особые, «солнечные» сое­динения — нет, химики умеют их получать и исследовать на Земле. Это простейшие радика­лы: СН, ОН, NH, CaH, SiH, CN. Более слож­ные молекулы, вероятно, не могут существо­вать на Солнце.

С точки зрения старой химии, имеющей дело только с электронными оболочками атома, химия Солнца, по-видимому, очень проста. Но на Солнце протекают процессы ядерной химии, и в очень грандиозных масштабах.

Периодический закон Менделеева помогает разобраться в том, что происходит на Солнце (и, конечно, на звездах, похожих на наше Солнце) и какие превращения испытывают на Солнце атомные ядра. В его недрах, при немыслимо вы­соких температурах и давлении, атомы элемен­тов теряют почти все свои электроны. В условиях сжатого до огромной плотности газа, состоящего главным образом из протонов и электронов, ядер гелия и относительно неболь­шой примеси ядер и ионов других элементов, протоны могут вступать между собой и с ядрами других элементов в ядерно-химические реакции.

Солнце — это мир водорода. Ядра осталь­ных элементов окружены со всех сторон прото­нами (ядрами водорода) и могут сталкиваться почти исключительно лишь с протонами. Другие столкновения происходят значительно реже. Если скорости и энергия сталкивающихся атом­ных ядер достаточно велики, то при столкно­вении оба ядра сливаются и возникает новый элемент.

На Солнце протекает очень много различ­ных ядерных реакций. Далеко не все они хорошо изучены, о многих из них мы еще и не подозреваем.

Одна из известных нам ядерных реакций на Солнце имеет особое значение. Она определяет природу Солнца. Это реакция образования ге­лия из водорода. Она протекает различными путями. Протоны могут соединяться непосред­ственно друг с другом. При этом образуются ядра дейтерия (тяжелый изотоп водорода) и ге-лия-3 (легкий изотоп гелия). Реагируя с про­тонами, они образуют ядра гелия-4.

Но еще интереснее и важнее сложная ядер­ная каталитическая реакция — синтез гелия из водорода на углеродных атомах. Эта реакция протекает не сразу, а в несколько ступеней. Катализатором в этой солнечной реакции слу­жит углерод, точнее, его наиболее распро­страненный изотоп С 12 , тот самый, которого больше всего и на Земле.

Первая стадия реакции — соединение ядер водорода с ядрами изотопа углерод-12. При этом возникает атомное ядро с семью положительны­ми зарядами: у углерода их шесть, а с протоном добавляется еще один. Возникает атом нового элемента, ядро которого обладает семью заря­дами, а атомный вес увеличивается на единицу.

С таким атомным ядром ученые знакомы; на Земле его нет, но они уже умеют получать его искусственно.

Согласно правилу сдвига, элемент при уве­личении заряда ядра на единицу превращается в другой, занимающий в таблице Менделеева следующую по порядку клетку. Углерод-12, захватив протон, превращается в азот — в ра­диоактивный изотоп азота N 13 (рис. 21). Пери­од его жизни невелик: за 10 минут он распада­ется наполовину. Выбрасывая позитрон и ней­трино, тяжелый азот превращается снова в тя­желый изотоп углерода—С 13 (рис. 22). Не нуж­но думать, что это какой-то особенный «сол­нечный» углерод. Его много и на Земле: в земном углероде изотопа С 13 около одного процента.

Образовавшееся ядро тяжелого углерода С 13 , подвергаясь новым ударам протонов, может слиться с тем из них, который обладает доста­точно большой энергией. При этом, как сле­дует из периодического закона, возникает ядро азота (рис. 23), но уже с большим атомным весом: на этот раз возникает самый обычный азот N 14 , который содержится в атмосфере Земли и который мы вдыхаем вместе с кислородом. Какие бы элементы ни возникали на Солн­це в цепи ядерно-химических превращений, какие бы элементы там ни существовали, их судьба предопределена: они снова и снова должны участвовать в протонных превраще­ниях. Такова же судьба и изотопа азота N 14 : его ядра будут реагировать с ядрами водорода. При их соединении, согласно правилу сдвига, должно возникнуть ядро легкого кислорода O 15 (рис. 24). Такого изотопа на Земле нет, но физики умеют его получать и хорошо изу­чили его свойства. Он радиоактивен и исче­зает в короткое время. При распаде этот изо­топ испускает позитрон и нейтрино и уже в третий раз превращается в азот, в тяжелый изотоп азота — N 15 (рис. 25). Он стабилен, хорошо известен и в небольшом количестве всегда присутствует в обычном земном азоте.

Читайте также:  Ядерный синтез энергия солнца

На Солнце в это атомное ядро снова внед­ряется протон, и тут ядро N 15 сразу распада­ется, выбрасывая α -частицу (ядро атома гелия), и превращается в ядро обычного углерода С 12 (рис. 26), с которого началась эта удивительная цепь последовательных ядерных превращений.

Итак, на Солнце атомное ядро углерода в результате четырех последовательных ядерных реакций с протонами, трижды превратившись в азот, один раз — в тяжелый углерод, один раз — в кислород, выбросив по дороге два по­зитрона, потеряв две загадочные частицы — нейтрино, превращается в конце концов в тот же самый изотоп углерода С 12 и α -частицу.

В результате углерод остался таким же, каким он и был. Но исчезли четыре водородных ядра, и возникло ядро гелия. Оно сформиро­валось на углеродном атомном ядре, которое осталось без изменений, послужив ядерным ка­тализатором в ядерно-химической реакции — в синтезе гелия из водорода. Таким образом, водород на Солнце — топливо, а гелий — зола, отбросы.

Долго, невообразимо долго продолжается этот замечательный ядерный цикл реакций: должно пройти почти 5 млн. лет, пока атом углерода после всех последовательных превра­щений станет снова атомом углерода. Ведь далеко не каждое соударение с протоном ведет к реакции. Требуются миллионы лет, чтобы среди бесчисленного множества столкновений ядер углерода с протонами произошло столкновение с таким быстрым протоном, энергия которого так велика, что он способен проникнуть в малень­кую неприступную крепость — атомное ядро.

Но и с такой скоростью (за 5 млн. лет одно полное превращение) эта реакция может идти только при температуре не ниже 20 млн. гра­дусов. Температура же на поверхности Солнца не превышает 6000°. Это означает, что тайна Солнца скрыта в его недрах, в его централь­ных областях, где, как рассчитывают ученые, царят чудовищно высокие температуры, близ­кие к 20 млн. градусов.

Не нужно думать, что все только что изло­женное — это лишь предположение ученых. Физики уже сумели повторить в лабораториях все стадии солнечного ядерно-химического про­цесса. Ученым не нужно ждать миллионы лет, чтобы осуществить самую медленную стадию этого цикла. В ускорителях получают прото­ны с такой большой энергией, которая превы­шает их возможную энергию при 20 млн. гра­дусов на Солнце.

Спектроскописты сумели определить, сколь­ко углерода на Солнце. Они измерили, сколько в нем тяжелого изотопа С 13 . Физики рассчита­ли скорость этой реакции, нашли, сколько энергии выделяется при каждом полном цикле. Астрономы измерили массу солнечного шара, рассчитали температуры в его глубинах.

В результате большой общей работы было найдено, что при 20 млн. градусов и при том количестве изотопа С 13 , какое было найдено на Солнце, должно возникать ровно столько энергии, сколько ее излучает Солнце.

Посмотрите на солнышко, как много чу­десного рассказали ученым его ласковые лучи, в которых вы греетесь и загораете летом, о таинственных и загадочных процессах, проте­кающих за миллионы километров от нашей Зем­ли. Но еще не все понятно, не все изучено. Мно­гое и многое остается на вашу долю, юные чи­татели Детской энциклопедии.

Источник

Солнце: характеристика, состав, строение, химический состав солнца

Состав атмосферы Солнца

При наблюдении в 1868 году полного солнечного затмения в спектре солнечной атмосферы была обнаружена яркая жёлтая линия, которой до этого не получали в спектрах земных веществ. Это вещество было названо гелием (гелиос — означает Солнце).

На Земле оно было найдено только через 30 лет. В 1942 году в атмосфере Солнца было обнаружено, правда, в небольшом количестве, золото. Всего на Солнце найдено пока 64 элемента таблицы Менделеева. Исследования при помощи спектрального анализа показали такое содержание элементов в солнечной атмосфере (по числу атомов):

Химический элемент Содержание в процентах
Водород • . Гелий .

• . Углерод . . Азот …. Кислород Натрий . . Магний . ♦ Алюминий . Кремний . . Сера …. Калий . • . 81,760 18,170 0,003000 0,010000 0,030000 0,000300 0,020000 0,000200 0,006000 0,003000 0,000010

Химический элемент Содержание в процентах
Кальций Титан . . Ванадий Хром . . Марганец Железо . Кобальт Никель • Медь . . Цинк . . 0,000300 0,000003 0,000001 0,000006 0,000010 0,000800 0,000004 0,000200 0,000002 0,000030

В настоящее время считается, что по массе (а не по числу атомов) Солнце состоит на 50 процентов из водорода и на 40 процентов из гелия.

На все другие элементы приходится всего 10 процентов.

Из чего состоит Солнце

Солнце представляет собой гигантский огненный шар, являющейся центром нашей звёздной системы. В прошлом считалось, что Солнце имеет идеально круглую форму, однако проведённые исследования показали, что наше Солнце состоит из многочисленных слоев.

Читайте также:  Юбка солнце как сшить без шва

Каждый из таких слоев выполняет определенную функцию. По своей структуре Солнце схоже с гигантской печью, которая отдает тепло всем близлежащим звёздам.

Состав Солнца

Солнце имеет стабильный состав и состоит на 24 % из гелия и на 74 % из водорода.

Также тут имеется 1 % кислорода и ряд других элементов, массовая доля которых не превышает 1 %.

Учёные в течение длительного времени изучали структуру и состав Солнца и пришли к выводу, что в результате взрыва появилась звезда, содержащая гелий и молекулярный водород. На Солнце происходит процесс ядерного синтеза, и водород постепенно превращается в гелий.

Для начала процесса синтеза необходима огромная температура и высокая масса планеты.

Слои солнца

Как было сказано выше, Солнце состоит из многочисленных слоев, температура в которых по мере их приближения к ядру неизменно увеличивается. Необходимо сказать, что гелий и водород в различных слоях имеет отличающиеся характеристики.

Ядро солнца

В центре планеты располагается ядро, показатели температуру внутри которого огромны. Именно тут и протекает реакция синтеза.

Из атомов водорода образуется гелий, а вместе с ним и свет с теплом. Такое тепло впоследствии доходит до Земли и является источником жизни на нашей планете. Установлено, что температура на Солнце составляет 36.000.000 градусов.

Экспериментальным путём удалось установить, что размер ядра составляет порядка 20 % всей длины радиуса Солнца. Несмотря на состояние электронов и нейронов, Солнце способно преобразовать атомы водорода в гелий.

Такая реакция получила название экзотермической.

При её протекании выделяется огромное количество тепла.

Зона радиации на Солнце

Находится солнечная радиационная зона у границы ядра и может достигать около 70 % всего радиуса Солнца.

В этой зоне находится горячее вещество, которое позволяет передавать тепловую энергию от ядра во внешний слой.

Происходящее в ядре Солнца реакция ядерного синтеза приводит к появлению различных радиационных фотонов. Впоследствии эти фотоны переходят через радиационный слой и выбрасываются Солнцем наружу. Учёные смогли установить, что на то чтобы преодолеть фотонам радиационный слой внутри Солнца им требуется около 200.000 лет.

Лишь после этого традиционный фотон выбрасываются наружу, и вместе с солнечным ветром блуждает по космосу. Чтобы понять мощность такого солнечного ветра можем сказать, что расстояние от Солнца до Земли ветер покрывает за 8 минут.

Необходимо сказать, что такие радиационные зоны имеются у множества звёзд. Их сила и размер зависит от величины звезды.

Конвективная зона

Этот слой располагается снаружи радиационной зоны. Необходимо сказать, что конвективная зона имеется практически у всех звёзд.

Состоит она из газа и плотных веществ. Именно тут происходит потеря тепла, и охлаждённый газ устремляется обратно к центру Солнца, что позволяет продолжить ядерный синтез.

Фотосфера

Фотосфера является единственным видимым непосредственно с Земли слоем Солнца. Установлено, что температура поверхности составляет 6000 К. Светиться фотосфера желто-белым светом, который хорошо виден с Земли.

У Солнца также имеется атмосфера, которую принято называть короной.

Этот слой мы можем видеть во время солнечных затмений.

Основные статьи: Солнце, Спектр звёзд, Характеристики звезды

Очень скоро после открытия спектрального анализа были получены спектрыСолнца и было доказано, что вещество Солнца состо­ит из тех же химических элементов, что и Земля.

Правда, по­сле того как появились спектры звёзд, ясности стало меньше. Удивительным было то, что гелий был открыт в спектре сол­нечной короны, а в спектре Солнца его обнаружить не уда­лось.

Удивляло разнообразие звёздных спектров. В одних из них не было ничего, кроме линий гелия, и даже ионизован­ного гелия, в других один водород, в третьих водорода нет, но есть множество линий самых разнообразных элементов.

Появление квантовой механики позволило разобраться во всем этом разнообразии.

Выяснилось, что особенности спект­ров определяются главным образом температурой того слоя, в котором образуются спектральные линии. При различных тем­пературах создаются условия для появления разных спект­ральных линий.

Когда удалось провести расчёты спектральных линий, смог­ли определить и истинный химический состав звёзд.

Он ока­зался удивительно одинаковым. Во всех звёздах, точнее во всей Вселенной, преобладающими элементами являются водо­род (около 65% по массе) и гелий (около 35% по массе). На долю всех остальных химических элементов приходится не бо­лее 1% по массе.

Химический состав вещества звёзд, несомненно, зависит от их возраста.

В самых старых звёздах количество тяжёлых (тя­желее гелия) химических элементов не превышает 0,1%, а в самых молодых доходит до 4%. Это очень важный факт для теории эволюции звёзд, галактик и Вселенной.

Спектральные линии водорода

Для простоты понимания можно рассмотреть появление в спек­тре звезды линий водорода.

Спектр водорода образуется при переходах электрона внутри атома с одного энергетического уровня на другой.

В частности, линии водорода появятся в спектре только тогда, когда в веществе значительное количе­ство атомов водорода имеет электрон на втором энергетичес­ком уровне. Чем больше таких атомов, тем сильнее наблюда­емая линия. Материал с сайта http://wikiwhat.ru

В звёздах с низкой температурой атмосферы (3000— 4000 K) атомов водорода с электроном на втором уровне нет.

Читайте также:  Во время солнца болит голова

Ведь, для того чтобы перевести электрон на второй уровень, он должен получить достаточно большую энергию при столк­новении с другим атомом или свободным электроном. Но при столь низких температурах атомов и электронов с такой боль­шой энергией просто очень мало.

При температурах около 10 000 K в большинстве атомов водорода электроны находятся именно на втором энергетиче­ском уровне и в спектре видны мощные линии водорода.

При ещё больших температурах водород уже ионизован и в спект­ре его линий нет, зато появляются линии гелия, и при тем­пературах около 35 000 K в спектре видны только линии ге­лия и ионизованного гелия.

Нужно сказать, что при низких температурах почти все атомы водорода имеют электрон на самом низком, основном уровне, их линии поглощения лежат в далёкой ультрафиоле­товой области спектра.

Солнце — своеобразные ядерный реактор. В нем постоянно протекают процессы ядерных реакций с выделением большого количества энергии, которая нас согревает.

Превращения идут от легких «нестабильных» элементов до тяжелых металлов. Уже сейчас ученые по спектральному анализу нашли в «атмосфере» Солнца пары железа. Отсюда они делают вывод что Солнцу осталось жить не более 5-7 миллиардов лет. Если я не ошибаюсь.

Солнце — это обычная звезда, ее возраст около 5 миллиардов лет, оно представляет собой огромный светящийся газовый шар, внутри которо­го протекают сложные процессы и в результате непрерывно выделяется энергия, диаметр его примерно в 109 раз превосходит диаметр Земли.

Внутри Солнца могло бы поместиться более миллиона небесных тел размером с 3емлю. ——————————————————————————— Как же устроено Солнце? В центральной части Солнца находится источник его энергии. Эта область называется ядром. Под тяжестью внешних слоев вещество внутри Солнца сжато настолько, что давление в нем в 200 миллиардов раз выше, чем давление воздуха в земной атмосфере. Плотность вещества его (в 7 раз большая, чем у самого плотного земного металла) увеличивается к центру вместе с ростом давления и температуры.

Ядро имеет радиус не более четверти общего радиуса Солнца, а температура там достигает 15 миллионов градусов. В его объёме сосредоточена поло­вина солнечной массы и выделяется практически вся энергия, которая поддерживает свечение Солнца.

Эта энергия выделяется в результате слияния атомов лёгких химических элементов в атомы более тяжёлых. В недрах Солнца из четырёх атомов водорода образуется один атом гелия. Энергия переносится из внутренних сло­ев Солнца путем излучения ближе к по­верхности, и процесс этот занимает около 10 милли­онов лет. ——————————————————————————— СОЛНЕЧНАЯ АТМОСФЕРА Земная атмосфера — это воздух, которым мы дышим, привычная для нас газовая оболочка Земли.

Такие оболочки есть и у других планет. Звёзды целиком состоят из газа, но их внешние слои также именуют атмосферой. Желтый свет Солнца приходит к нам из слоя солнечной атмосферы, который имеет толщину 500 км и на­зывается фотосферой. Под ним лежат внутренние области Солнца, а выше — прозрачные части наружной атмосферы.

Практически вся солнечная энергия, включая тепло и свет, падающие на Землю, приходит к нам от фотосферы, но первоначально производится в глубине Солнца. Толщина фотосферы составляет не более одной трёхтысячной до­ли солнечного радиуса, поэтому фотосферу иногда условно называют поверхностью Солнца.

Плотность газов в фотосфере в сотни раз меньше, чем у поверхности Земли, а температура фотосферы равна приблизительно 5500°С. При таких условиях, почти все молекулы газа распадаются на отдельные атомы. Лишь в самых верхних слоях фотосферы сохраняется относительно немного простейших молекул. ——————————————————————————— Фотосфера имеет зернистую структуру, называемую грануляцией.

Диаметр каждой из гранул около 1000 км, они представля­ет собой поднявшийся на поверхность поток горячего вещества. Гранулы недолговечны. Они непрерывно видоизменяются, возникают и исчезают. Средняя продол­жительность жизни гранул составляет 10 минут. На фотосфе­ре часто можно увидеть относительно небольшие темные области — солнечные пятна. Они на 1500° холод­нее окружающей их фотосферы, температура которой достигает 5800°.

Из-за разницы температур с фотосферой, оно ка­жется совсем чёрным, хотя в действительности яркость его слабее только раз в десять эти пятна и кажутся при наблюдении в телескоп совершенно черными. С течением времени величина, и форма пятен сильно меняются.

Возникнув в виде едва заметной точки — поры, пятно постепенно увеличивает свои размеры до нескольких десятков тысяч километров. Солнечные пятна часто образуют группы из нескольких больших и малых пятен, и такие группы могут занимать значительные области на солнечном диске. Картина группы всё время меняется, пятна рождаются, растут и распадаются.

Живут груп­пы пятен долго, иногда на протяже­нии двух или трёх оборотов Солнца (период вращения Солнца составляет примерно 27 суток) . Фотосфера постепенно переходит в более разреженные внешние слои солнечной атмосферы — хро­мосферу и

Это состояние называется ПЛАЗМА, причём в плазменном состянии на Солнце находятся молекулы ВОДОРОДА и ГЕЛИЯ.

74% водорода и 24% гелия.

Также, Солнце состоит из 1% кислорода, и оставшийся 1% — это такие элементы таблицы Менделеева, как: хром, кальций, неон, углерод, магний, сера, кремний, никель, железо

Источник

Adblock
detector