—> Детская Энциклопедия —>
Химия Солнца
Трудно даже вообразить, что человек может изучить химию Солнца. Но наука сумела многое сделать: мы знаем теперь химический состав Солнца, знаем (и знаем уже немало) о грандиозных процессах — источниках солнечной энергии.
С помощью спектрального анализа было найдено на Солнце более шестидесяти элементов периодической системы Менделеева. Наверное, будут найдены и остальные.
Определены даже количественные соотношения между химическими элементами на Солнце. Оказалось, что Солнце — это мир раскаленного водорода. Водородных атомов там почти в пять раз больше, чем атомов гелия, ив тысячу раз больше, чем атомов всех остальных элементов, вместе взятых.
Среди других элементов на Солнце преобладают углерод, кислород и азот. Немало там и магния, алюминия, кремния, серы, железа. В меньшем количестве присутствуют калий, кальций, натрий, свинец и другие. Обнаружено даже несколько представителей редких земель; можно быть уверенным, что будут найдены и остальные. Как и повсюду в мироздании, на Солнце преобладают легкие элементы, с малыми атомными номерами. Кроме того, как правило, элементов с четными порядковыми номерами на Солнце значительно больше, чем их соседей по периодической таблице с нечетными номерами.
Мало того, если не считать водорода и гелия, занимающих в мироздании вообще особое положение, то наблюдается замечательное соответствие между относительным содержанием остальных элементов на Солнце и в каменных метеоритах (см. табл.).
Обнаружены на Солнце и простейшие химические соединения, молекулы которых способны выдержать очень высокую температуру. Это не какие-нибудь особые, «солнечные» соединения — нет, химики умеют их получать и исследовать на Земле. Это простейшие радикалы: СН, ОН, NH, CaH, SiH, CN. Более сложные молекулы, вероятно, не могут существовать на Солнце.
С точки зрения старой химии, имеющей дело только с электронными оболочками атома, химия Солнца, по-видимому, очень проста. Но на Солнце протекают процессы ядерной химии, и в очень грандиозных масштабах.
Периодический закон Менделеева помогает разобраться в том, что происходит на Солнце (и, конечно, на звездах, похожих на наше Солнце) и какие превращения испытывают на Солнце атомные ядра. В его недрах, при немыслимо высоких температурах и давлении, атомы элементов теряют почти все свои электроны. В условиях сжатого до огромной плотности газа, состоящего главным образом из протонов и электронов, ядер гелия и относительно небольшой примеси ядер и ионов других элементов, протоны могут вступать между собой и с ядрами других элементов в ядерно-химические реакции.
Солнце — это мир водорода. Ядра остальных элементов окружены со всех сторон протонами (ядрами водорода) и могут сталкиваться почти исключительно лишь с протонами. Другие столкновения происходят значительно реже. Если скорости и энергия сталкивающихся атомных ядер достаточно велики, то при столкновении оба ядра сливаются и возникает новый элемент.
На Солнце протекает очень много различных ядерных реакций. Далеко не все они хорошо изучены, о многих из них мы еще и не подозреваем.
Одна из известных нам ядерных реакций на Солнце имеет особое значение. Она определяет природу Солнца. Это реакция образования гелия из водорода. Она протекает различными путями. Протоны могут соединяться непосредственно друг с другом. При этом образуются ядра дейтерия (тяжелый изотоп водорода) и ге-лия-3 (легкий изотоп гелия). Реагируя с протонами, они образуют ядра гелия-4.
Но еще интереснее и важнее сложная ядерная каталитическая реакция — синтез гелия из водорода на углеродных атомах. Эта реакция протекает не сразу, а в несколько ступеней. Катализатором в этой солнечной реакции служит углерод, точнее, его наиболее распространенный изотоп С 12 , тот самый, которого больше всего и на Земле.
Первая стадия реакции — соединение ядер водорода с ядрами изотопа углерод-12. При этом возникает атомное ядро с семью положительными зарядами: у углерода их шесть, а с протоном добавляется еще один. Возникает атом нового элемента, ядро которого обладает семью зарядами, а атомный вес увеличивается на единицу.
С таким атомным ядром ученые знакомы; на Земле его нет, но они уже умеют получать его искусственно.
Согласно правилу сдвига, элемент при увеличении заряда ядра на единицу превращается в другой, занимающий в таблице Менделеева следующую по порядку клетку. Углерод-12, захватив протон, превращается в азот — в радиоактивный изотоп азота N 13 (рис. 21). Период его жизни невелик: за 10 минут он распадается наполовину. Выбрасывая позитрон и нейтрино, тяжелый азот превращается снова в тяжелый изотоп углерода—С 13 (рис. 22). Не нужно думать, что это какой-то особенный «солнечный» углерод. Его много и на Земле: в земном углероде изотопа С 13 около одного процента.
Образовавшееся ядро тяжелого углерода С 13 , подвергаясь новым ударам протонов, может слиться с тем из них, который обладает достаточно большой энергией. При этом, как следует из периодического закона, возникает ядро азота (рис. 23), но уже с большим атомным весом: на этот раз возникает самый обычный азот N 14 , который содержится в атмосфере Земли и который мы вдыхаем вместе с кислородом. Какие бы элементы ни возникали на Солнце в цепи ядерно-химических превращений, какие бы элементы там ни существовали, их судьба предопределена: они снова и снова должны участвовать в протонных превращениях. Такова же судьба и изотопа азота N 14 : его ядра будут реагировать с ядрами водорода. При их соединении, согласно правилу сдвига, должно возникнуть ядро легкого кислорода O 15 (рис. 24). Такого изотопа на Земле нет, но физики умеют его получать и хорошо изучили его свойства. Он радиоактивен и исчезает в короткое время. При распаде этот изотоп испускает позитрон и нейтрино и уже в третий раз превращается в азот, в тяжелый изотоп азота — N 15 (рис. 25). Он стабилен, хорошо известен и в небольшом количестве всегда присутствует в обычном земном азоте.
На Солнце в это атомное ядро снова внедряется протон, и тут ядро N 15 сразу распадается, выбрасывая α -частицу (ядро атома гелия), и превращается в ядро обычного углерода С 12 (рис. 26), с которого началась эта удивительная цепь последовательных ядерных превращений.
Итак, на Солнце атомное ядро углерода в результате четырех последовательных ядерных реакций с протонами, трижды превратившись в азот, один раз — в тяжелый углерод, один раз — в кислород, выбросив по дороге два позитрона, потеряв две загадочные частицы — нейтрино, превращается в конце концов в тот же самый изотоп углерода С 12 и α -частицу.
В результате углерод остался таким же, каким он и был. Но исчезли четыре водородных ядра, и возникло ядро гелия. Оно сформировалось на углеродном атомном ядре, которое осталось без изменений, послужив ядерным катализатором в ядерно-химической реакции — в синтезе гелия из водорода. Таким образом, водород на Солнце — топливо, а гелий — зола, отбросы.
Долго, невообразимо долго продолжается этот замечательный ядерный цикл реакций: должно пройти почти 5 млн. лет, пока атом углерода после всех последовательных превращений станет снова атомом углерода. Ведь далеко не каждое соударение с протоном ведет к реакции. Требуются миллионы лет, чтобы среди бесчисленного множества столкновений ядер углерода с протонами произошло столкновение с таким быстрым протоном, энергия которого так велика, что он способен проникнуть в маленькую неприступную крепость — атомное ядро.
Но и с такой скоростью (за 5 млн. лет одно полное превращение) эта реакция может идти только при температуре не ниже 20 млн. градусов. Температура же на поверхности Солнца не превышает 6000°. Это означает, что тайна Солнца скрыта в его недрах, в его центральных областях, где, как рассчитывают ученые, царят чудовищно высокие температуры, близкие к 20 млн. градусов.
Не нужно думать, что все только что изложенное — это лишь предположение ученых. Физики уже сумели повторить в лабораториях все стадии солнечного ядерно-химического процесса. Ученым не нужно ждать миллионы лет, чтобы осуществить самую медленную стадию этого цикла. В ускорителях получают протоны с такой большой энергией, которая превышает их возможную энергию при 20 млн. градусов на Солнце.
Спектроскописты сумели определить, сколько углерода на Солнце. Они измерили, сколько в нем тяжелого изотопа С 13 . Физики рассчитали скорость этой реакции, нашли, сколько энергии выделяется при каждом полном цикле. Астрономы измерили массу солнечного шара, рассчитали температуры в его глубинах.
В результате большой общей работы было найдено, что при 20 млн. градусов и при том количестве изотопа С 13 , какое было найдено на Солнце, должно возникать ровно столько энергии, сколько ее излучает Солнце.
Посмотрите на солнышко, как много чудесного рассказали ученым его ласковые лучи, в которых вы греетесь и загораете летом, о таинственных и загадочных процессах, протекающих за миллионы километров от нашей Земли. Но еще не все понятно, не все изучено. Многое и многое остается на вашу долю, юные читатели Детской энциклопедии.
Источник
Солнце: характеристика, состав, строение, химический состав солнца
Состав атмосферы Солнца
При наблюдении в 1868 году полного солнечного затмения в спектре солнечной атмосферы была обнаружена яркая жёлтая линия, которой до этого не получали в спектрах земных веществ. Это вещество было названо гелием (гелиос — означает Солнце).
На Земле оно было найдено только через 30 лет. В 1942 году в атмосфере Солнца было обнаружено, правда, в небольшом количестве, золото. Всего на Солнце найдено пока 64 элемента таблицы Менделеева. Исследования при помощи спектрального анализа показали такое содержание элементов в солнечной атмосфере (по числу атомов):
Химический элемент Содержание в процентах
Водород • . Гелий .
• . Углерод . . Азот …. Кислород Натрий . . Магний . ♦ Алюминий . Кремний . . Сера …. Калий . • . 81,760 18,170 0,003000 0,010000 0,030000 0,000300 0,020000 0,000200 0,006000 0,003000 0,000010
Химический элемент Содержание в процентах
Кальций Титан . . Ванадий Хром . . Марганец Железо . Кобальт Никель • Медь . . Цинк . . 0,000300 0,000003 0,000001 0,000006 0,000010 0,000800 0,000004 0,000200 0,000002 0,000030
В настоящее время считается, что по массе (а не по числу атомов) Солнце состоит на 50 процентов из водорода и на 40 процентов из гелия.
На все другие элементы приходится всего 10 процентов.
Из чего состоит Солнце
Солнце представляет собой гигантский огненный шар, являющейся центром нашей звёздной системы. В прошлом считалось, что Солнце имеет идеально круглую форму, однако проведённые исследования показали, что наше Солнце состоит из многочисленных слоев.
Каждый из таких слоев выполняет определенную функцию. По своей структуре Солнце схоже с гигантской печью, которая отдает тепло всем близлежащим звёздам.
Состав Солнца
Солнце имеет стабильный состав и состоит на 24 % из гелия и на 74 % из водорода.
Также тут имеется 1 % кислорода и ряд других элементов, массовая доля которых не превышает 1 %.
Учёные в течение длительного времени изучали структуру и состав Солнца и пришли к выводу, что в результате взрыва появилась звезда, содержащая гелий и молекулярный водород. На Солнце происходит процесс ядерного синтеза, и водород постепенно превращается в гелий.
Для начала процесса синтеза необходима огромная температура и высокая масса планеты.
Слои солнца
Как было сказано выше, Солнце состоит из многочисленных слоев, температура в которых по мере их приближения к ядру неизменно увеличивается. Необходимо сказать, что гелий и водород в различных слоях имеет отличающиеся характеристики.
Ядро солнца
В центре планеты располагается ядро, показатели температуру внутри которого огромны. Именно тут и протекает реакция синтеза.
Из атомов водорода образуется гелий, а вместе с ним и свет с теплом. Такое тепло впоследствии доходит до Земли и является источником жизни на нашей планете. Установлено, что температура на Солнце составляет 36.000.000 градусов.
Экспериментальным путём удалось установить, что размер ядра составляет порядка 20 % всей длины радиуса Солнца. Несмотря на состояние электронов и нейронов, Солнце способно преобразовать атомы водорода в гелий.
Такая реакция получила название экзотермической.
При её протекании выделяется огромное количество тепла.
Зона радиации на Солнце
Находится солнечная радиационная зона у границы ядра и может достигать около 70 % всего радиуса Солнца.
В этой зоне находится горячее вещество, которое позволяет передавать тепловую энергию от ядра во внешний слой.
Происходящее в ядре Солнца реакция ядерного синтеза приводит к появлению различных радиационных фотонов. Впоследствии эти фотоны переходят через радиационный слой и выбрасываются Солнцем наружу. Учёные смогли установить, что на то чтобы преодолеть фотонам радиационный слой внутри Солнца им требуется около 200.000 лет.
Лишь после этого традиционный фотон выбрасываются наружу, и вместе с солнечным ветром блуждает по космосу. Чтобы понять мощность такого солнечного ветра можем сказать, что расстояние от Солнца до Земли ветер покрывает за 8 минут.
Необходимо сказать, что такие радиационные зоны имеются у множества звёзд. Их сила и размер зависит от величины звезды.
Конвективная зона
Этот слой располагается снаружи радиационной зоны. Необходимо сказать, что конвективная зона имеется практически у всех звёзд.
Состоит она из газа и плотных веществ. Именно тут происходит потеря тепла, и охлаждённый газ устремляется обратно к центру Солнца, что позволяет продолжить ядерный синтез.
Фотосфера
Фотосфера является единственным видимым непосредственно с Земли слоем Солнца. Установлено, что температура поверхности составляет 6000 К. Светиться фотосфера желто-белым светом, который хорошо виден с Земли.
У Солнца также имеется атмосфера, которую принято называть короной.
Этот слой мы можем видеть во время солнечных затмений.
Основные статьи: Солнце, Спектр звёзд, Характеристики звезды
Очень скоро после открытия спектрального анализа были получены спектрыСолнца и было доказано, что вещество Солнца состоит из тех же химических элементов, что и Земля.
Правда, после того как появились спектры звёзд, ясности стало меньше. Удивительным было то, что гелий был открыт в спектре солнечной короны, а в спектре Солнца его обнаружить не удалось.
Удивляло разнообразие звёздных спектров. В одних из них не было ничего, кроме линий гелия, и даже ионизованного гелия, в других один водород, в третьих водорода нет, но есть множество линий самых разнообразных элементов.
Появление квантовой механики позволило разобраться во всем этом разнообразии.
Выяснилось, что особенности спектров определяются главным образом температурой того слоя, в котором образуются спектральные линии. При различных температурах создаются условия для появления разных спектральных линий.
Когда удалось провести расчёты спектральных линий, смогли определить и истинный химический состав звёзд.
Он оказался удивительно одинаковым. Во всех звёздах, точнее во всей Вселенной, преобладающими элементами являются водород (около 65% по массе) и гелий (около 35% по массе). На долю всех остальных химических элементов приходится не более 1% по массе.
Химический состав вещества звёзд, несомненно, зависит от их возраста.
В самых старых звёздах количество тяжёлых (тяжелее гелия) химических элементов не превышает 0,1%, а в самых молодых доходит до 4%. Это очень важный факт для теории эволюции звёзд, галактик и Вселенной.
Спектральные линии водорода
Для простоты понимания можно рассмотреть появление в спектре звезды линий водорода.
Спектр водорода образуется при переходах электрона внутри атома с одного энергетического уровня на другой.
В частности, линии водорода появятся в спектре только тогда, когда в веществе значительное количество атомов водорода имеет электрон на втором энергетическом уровне. Чем больше таких атомов, тем сильнее наблюдаемая линия. Материал с сайта http://wikiwhat.ru
В звёздах с низкой температурой атмосферы (3000— 4000 K) атомов водорода с электроном на втором уровне нет.
Ведь, для того чтобы перевести электрон на второй уровень, он должен получить достаточно большую энергию при столкновении с другим атомом или свободным электроном. Но при столь низких температурах атомов и электронов с такой большой энергией просто очень мало.
При температурах около 10 000 K в большинстве атомов водорода электроны находятся именно на втором энергетическом уровне и в спектре видны мощные линии водорода.
При ещё больших температурах водород уже ионизован и в спектре его линий нет, зато появляются линии гелия, и при температурах около 35 000 K в спектре видны только линии гелия и ионизованного гелия.
Нужно сказать, что при низких температурах почти все атомы водорода имеют электрон на самом низком, основном уровне, их линии поглощения лежат в далёкой ультрафиолетовой области спектра.
Солнце — своеобразные ядерный реактор. В нем постоянно протекают процессы ядерных реакций с выделением большого количества энергии, которая нас согревает.
Превращения идут от легких «нестабильных» элементов до тяжелых металлов. Уже сейчас ученые по спектральному анализу нашли в «атмосфере» Солнца пары железа. Отсюда они делают вывод что Солнцу осталось жить не более 5-7 миллиардов лет. Если я не ошибаюсь.
Солнце — это обычная звезда, ее возраст около 5 миллиардов лет, оно представляет собой огромный светящийся газовый шар, внутри которого протекают сложные процессы и в результате непрерывно выделяется энергия, диаметр его примерно в 109 раз превосходит диаметр Земли.
Внутри Солнца могло бы поместиться более миллиона небесных тел размером с 3емлю. ——————————————————————————— Как же устроено Солнце? В центральной части Солнца находится источник его энергии. Эта область называется ядром. Под тяжестью внешних слоев вещество внутри Солнца сжато настолько, что давление в нем в 200 миллиардов раз выше, чем давление воздуха в земной атмосфере. Плотность вещества его (в 7 раз большая, чем у самого плотного земного металла) увеличивается к центру вместе с ростом давления и температуры.
Ядро имеет радиус не более четверти общего радиуса Солнца, а температура там достигает 15 миллионов градусов. В его объёме сосредоточена половина солнечной массы и выделяется практически вся энергия, которая поддерживает свечение Солнца.
Эта энергия выделяется в результате слияния атомов лёгких химических элементов в атомы более тяжёлых. В недрах Солнца из четырёх атомов водорода образуется один атом гелия. Энергия переносится из внутренних слоев Солнца путем излучения ближе к поверхности, и процесс этот занимает около 10 миллионов лет. ——————————————————————————— СОЛНЕЧНАЯ АТМОСФЕРА Земная атмосфера — это воздух, которым мы дышим, привычная для нас газовая оболочка Земли.
Такие оболочки есть и у других планет. Звёзды целиком состоят из газа, но их внешние слои также именуют атмосферой. Желтый свет Солнца приходит к нам из слоя солнечной атмосферы, который имеет толщину 500 км и называется фотосферой. Под ним лежат внутренние области Солнца, а выше — прозрачные части наружной атмосферы.
Практически вся солнечная энергия, включая тепло и свет, падающие на Землю, приходит к нам от фотосферы, но первоначально производится в глубине Солнца. Толщина фотосферы составляет не более одной трёхтысячной доли солнечного радиуса, поэтому фотосферу иногда условно называют поверхностью Солнца.
Плотность газов в фотосфере в сотни раз меньше, чем у поверхности Земли, а температура фотосферы равна приблизительно 5500°С. При таких условиях, почти все молекулы газа распадаются на отдельные атомы. Лишь в самых верхних слоях фотосферы сохраняется относительно немного простейших молекул. ——————————————————————————— Фотосфера имеет зернистую структуру, называемую грануляцией.
Диаметр каждой из гранул около 1000 км, они представляет собой поднявшийся на поверхность поток горячего вещества. Гранулы недолговечны. Они непрерывно видоизменяются, возникают и исчезают. Средняя продолжительность жизни гранул составляет 10 минут. На фотосфере часто можно увидеть относительно небольшие темные области — солнечные пятна. Они на 1500° холоднее окружающей их фотосферы, температура которой достигает 5800°.
Из-за разницы температур с фотосферой, оно кажется совсем чёрным, хотя в действительности яркость его слабее только раз в десять эти пятна и кажутся при наблюдении в телескоп совершенно черными. С течением времени величина, и форма пятен сильно меняются.
Возникнув в виде едва заметной точки — поры, пятно постепенно увеличивает свои размеры до нескольких десятков тысяч километров. Солнечные пятна часто образуют группы из нескольких больших и малых пятен, и такие группы могут занимать значительные области на солнечном диске. Картина группы всё время меняется, пятна рождаются, растут и распадаются.
Живут группы пятен долго, иногда на протяжении двух или трёх оборотов Солнца (период вращения Солнца составляет примерно 27 суток) . Фотосфера постепенно переходит в более разреженные внешние слои солнечной атмосферы — хромосферу и
Это состояние называется ПЛАЗМА, причём в плазменном состянии на Солнце находятся молекулы ВОДОРОДА и ГЕЛИЯ.
74% водорода и 24% гелия.
Также, Солнце состоит из 1% кислорода, и оставшийся 1% — это такие элементы таблицы Менделеева, как: хром, кальций, неон, углерод, магний, сера, кремний, никель, железо
Источник