Меню

Частицы солнца достигающие земли

Астрономия 21 века

Солнце — пылающий шар

Радиус солнца (расстояние от его центра до поверхности) составляет приблизительно 695 500 километров, что приблизительно в 109 раз больше радиуса Земли. Следующий пример может помочь Вам представить относительные размеры солнца и Земли и расстояния между ними: Предположите, что Земля имеет радиус размером с обычную скрепку для бумаг. Тогда радиус Солнца был бы примерно равен высоте стола, а расстояние от Земли до Солнца приблизительно будет равно 100 шагам.

Температура видимой части солнца 5500 градусов по Цельсию. Астрономы измеряют звёздные температуры в метрической системе Кельвина (сокращённо К). Один Кельвин равняется 1 градусу Цельсия, но ноль по Кельвину и ноль по Цельсию находятся в разных местах. Шкала Кельвина начинается в абсолютном ноле, который составляет-273.15 градуса по Цельсию. Таким образом температура солнечной поверхности составляет приблизительно 5800К. Температуры в ядре солнца могут достигать 15 000 000 К.

Солнце, как Земля, является магнитным. Ученые описывают магнетизм объекта с точки зрения магнитного поля. Физики определяют магнитное поле как область, в которой магнитная сила могла быть обнаружена, например компасом.

Солнце родилось приблизительно 4.6 миллиарда лет назад. У этого есть достаточно запасов ядерного топлива, чтобы остаться очень горячим еще 5 миллиардов лет. Тогда оно вырастет, чтобы стать типом звезды называемым красным гигантом. По мере того как Солнце растеряет все свои внешние слои и оставшееся ядро разрушится солнце станет белым карликом. После этого Солнце войдет в свою заключительную фазу в качестве слабого, прохладного объекта, иногда называемого черным карликом.

Особенности солнца

Масса и плотность

Масса Солнца составляет 99.8 процентов массы в солнечной системе. Масса солнца — примерно 1,9891×10 27 тонн, что в 333 000 раз больше чем масса Земли. Средняя плотность солнца составляет приблизительно 1.4 килограмма на кубический дециметр. Это — приблизительно 1.4 раза больше плотности воды, такую плотность имеет солёная вода в Мёртвом море.

Состав

Солнце, как большинство других звезд, состоит главным образом из атомов водорода Второй самый многочисленный элемент на солнце — гелий. На 1 миллион атомов водорода на Солнце приходится 98 000 атомов гелия, 850 атомов кислорода, 360 углерода, 120 неона, 110 азота, 40 магния, 35 железа, и 35 кремния. Таким образом, приблизительно 94 процента атомов — водород, и 0.1 процента — остальные элементы кроме водорода и гелия.

Но поскольку водород является самым легким из всех элементов, он составляет только приблизительно 72 процента массы. 26 процентов массы составляет Гелий.

Внутренняя часть солнца и большая часть его атмосферы состоит из плазмы. Плазма — в основном газ, температура которого была поднята до такого высокого уровня, что он становится чувствительным к магнетизму. Ученые иногда подчеркивают различие в поведении между плазмой и другим газом. Они говорят, что плазма — четвертое состояние вещества, рядом с телом, жидкостью, и газом. Но вообще, ученые делают различие между плазмой и газом только когда это технически необходимо.

Существенное различие между плазмой и другим газом — эффект температурного расширения: Это расширение заставило газовые атомы сломаться. Таким образом плазма состоит из электрически заряженных атомов, названных ионами и электрически заряженных частиц, названными электронами, которые перемещаются независимо друг от друга.

Электрически нейтральный атом содержит один или более электронов, которые действуют, так как если бы они формировали оболочку или оболочки вокруг ее ядра. Каждый электрон несет единственную единицу отрицательного электрического заряда. Глубоко в атоме ядро, у которого есть почти вся масса атома. Самое простое ядро наиболее распространенной формы водорода, состоит из единственной частицы, известной как протон. Протон несет единственную единицу положительного электрического заряда. У всех других ядер есть один или более протонов и один или более нейтронов. Нейтрон не несет электрического заряда, таким образом, каждое ядро электрически положительно. Но у нейтрального атома количество электронов равно количеству протонов. Поэтому, электрический заряд нейтрального атома равен нулю.

Атом или молекула, которая ломается, теряя один или более электронов, имеют положительный заряд и называются ионом или, иногда, положительным ионом. Большинство атомов в солнце — положительные ионы атома водорода. Таким образом большая часть солнца состоит из одиночных протонов и независимых электронов.

Относительное количество плазмы и другого газа в конкретной части солнечной атмосферы зависит от температуры. По мере увеличения температуры, все больше атомов становится ионами. Самая высокая часть солнечной атмосферы, названной короной, сильно ионизирована. Температура короны меняется от 3 миллионов Кельвин до 5 миллионов Кельвин. Этого более чем достаточно чтобы оторвать более половины из 26 электронов атома железа.

Количество газа составленного из одиночных атомов и количество составленного из молекул также зависит от его температуры. Если газ будет относительно горяч, то атомы станут независимыми от электронов. Но если газ относительно прохладен, его атомы могут объединится, создавая молекулы. Большая часть поверхности солнца состоит из одиночных атомов. Но солнечные пятна настолько прохладны, что некоторые из их атомов могут объединится, чтобы сформировать молекулы.

Энергия

Большая часть энергии, испускаемой солнцем, является видимым светом и связанной формой радиации, известной как инфракрасные лучи, которые мы чувствуем как тепло. Видимый свет и инфракрасные лучи — две формы электромагнитной радиации. Солнце также испускает радиоактивные частицы, составленные главным образом из протонов и электронов.

Электромагнитная радиация

Электромагнитная радиация состоит из электрической и магнитной энергии. Радиация может считаться волнами энергии или подобными частице «пакетами» энергии, названной фотонами.

Видимый свет, инфракрасные лучи, и другие формы электромагнитной радиации отличаются по уровню энергии. Шесть групп энергии охватывают весь спектр электромагнитной энергии. От по мере увеличения энергии они разделяются на: радиоволны, инфракрасные лучи, видимый свет, ультрафиолетовые лучи, X-лучи, и гамма-лучи. Микроволны, которые являются высокоэнергетическими радиоволнами, как иногда полагают, являются отдельной группой. Спектр Солнца содержит каждый тип волн.

Количество энергии в электромагнитных волнах непосредственно связано с длиной волны этих волн (расстоянием между последовательными гребнями волны). Чем более энергичная радиация, тем короче длина волны. Например, у гамма-лучей более короткие длины волны чем радиоволны. Энергия в отдельном фотоне связана с положением фотона в спектре. Например, у фотона гамма-луча больше энергии чем у фотона радиоизлучения.

Все формы электромагнитной радиации летят сквозь пространство на одной и той же скорости, обычно известной как скорость света: 299 792 километра в секунду. На этой скорости фотону испускаемому Солнцем нужно около 8 минут, чтобы достигнуть Земли.

Количество электромагнитной радиации от солнца, которое достигает вершины атмосферы Земли, известно как солнечная константа. Это количество составляет приблизительно 1 370 ватт за квадратный метр. Но только 40 процентов этой энергии в этой радиации достигают поверхности Земли. Атмосфера блокирует часть видимой и инфракрасной радиации, почти все ультрафиолетовые лучи, и все X лучи и гамма-лучи. Но, почти все радиоволны достигают поверхности Земли.

Читайте также:  Продукты питания энергия солнца

Радиоактивные частицы

Протоны и электроны излучаются Солнцем во всех направлениях в виде солнечного ветра. Эти частицы могли бы достигнуть Земли, но магнитное поле Земли препятствует тому, чтобы они достигли её поверхности.

Однако, более интенсивные концентрации частиц от вспышек на солнце достигают атмосферы Земли. Эти частицы известны как солнечные космические лучи. Большинство из них — протоны, но они также включают в себя более тяжелые ядра. Они чрезвычайно энергичны. В результате они могут быть опасными для астронавтов в орбите, а также для орбитальных спутников.

Космические лучи не могут достигнуть поверхности Земли. Когда они сталкиваются с атомами наверху атмосферы, они изменяются в поток менее энергичных частиц. Но, поскольку солнечные вспышки очень энергичны, они могут создать геомагнитные бури в магнитном поле Земли. Эти бури, в свою очередь, могут разрушить электрическое оборудование на поверхности Земли. Например, они могут повредить линии электропередач.

В спектре видимого света присутствуют все цвета радуги. Солнечный свет состоит из всех этих цветов. Большая часть радиации солнца прибывает к нам в желто-зеленой части видимого спектра. Однако, солнечный свет является белым. Атмосфера Земли действует на солнечный свет как фильтр, поэтому Солнце может выглядеть желтым или оранжевым.

Вращение

Солнце вращается вокруг своей оси с периодом приблизительно в один месяц. Но, поскольку солнце газообразное тело, а не твердое, различные части солнца вращаются с различной скоростью. В экваториальной области период вращения примерно 25 дней, в то время как газ в более высоких широтах имеет период вращения чуть больше 28 дней. Ось солнца вращения наклонена на несколько градусов от оси орбиты Земли. Таким образом с Земли попеременно видны то северный географический полюс солнца, то его южный географический полюс.

Источник

Строение, излучение и эволюция солнца

Солнце (астр. ☉) – единственная звезда Солнечной системы. Вокруг Солнца обращаются другие объекты этой системы: планеты и их спутники, карликовые планеты и их спутники, астероиды, метеороиды, кометы и космическая пыль.

Внутреннее строение Солнца

Наше Солнце – это огромный светящийся газовый шар, внутри которого протекают сложные процессы и в результате непрерывно выделяется энергия. Внутренний объем Солнца можно разделить на несколько областей; вещество в них отличается по своим свойствам, и энергия распространяется посредством разных физических механизмов. Познакомимся с ними, начиная с самого центра.

В центральной части Солнца находится источник его энергии, или, говоря образным языком, та «печка», которая нагревает его и не дает ему остыть. Эта область называется ядром. Под тяжестью внешних слоев вещество внутри Солнца сжато, причем, чем глубже, тем сильнее. Плотность его увеличивается к центру вместе с ростом давления и температуры. В ядре, где температура достигает 15 млн. кельвинов, происходит выделение энергии.

Эта энергия выделяется в результате слияния атомов легких химических элементов в атомы более тяжелых. В недрах Солнца из четырех атомов водорода образуется один атом гелия. Именно эту страшную энергию люди научились освобождать при взрыве водородной бомбы. Есть надежда, что в недалеком будущем человек сможет научиться использовать ее и в мирных целях (в 2005 году новостные ленты передавали о начале строительства первого международного термоядерного реактора во Франции).

Ядро имеет радиус не более четверти общего радиуса Солнца. Однако в его объеме сосредоточена половина солнечной массы и выделяется практически вся энергия, которая поддерживает свечение Солнца. Но энергия горячего ядра должна как-то выходить наружу, к поверхности Солнца. Существуют различные способы передачи энергии в зависимости от физических условий среды, а именно: лучистый перенос, конвекция и теплопроводность. Теплопроводность не играет большой роли в энергетических процессах на Солнце и звездах, тогда как лучистый и конвективный переносы очень важны.

Сразу вокруг ядра начинается зона лучистой передачи энергии, где она распространяется через поглощение и излучение веществом порции света – квантов. Плотность, температура и давление уменьшаются по мере удаления от ядра, и в этом же направлении идет поток энергии. В целом процесс этот крайне медленный. Чтобы квантам добраться от центра Солнца до фотосферы, необходимы многие тысячи лет: ведь, переизлучаясь, кванты все время меняют направление, почти столь же часто двигаясь назад, как и вперед.

В центре Солнца рождаются гамма-кванты. Их энергия в миллионы раз больше, чем энергия квантов видимого света, а длина волны очень мала. По дороге кванты претерпевают удивительные превращения. Отдельный квант сначала поглощается каким-нибудь атомом, но тут же снова переизлучается; чаще всего при этом возникает не один прежний квант, а два или несколько. По закону сохранения энергии их общая энергия сохраняется, а потому энергия каждого из них уменьшается. Так возникают кванты все меньших и меньших энергий. Мощные гамма-кванты как бы дробятся на менее энергичные кванты – сначала рентгеновских, потом ультрафиолетовых и

наконец видимых и инфракрасных лучей. В итоге наибольшее количество энергии Солнце излучает в видимом свете, и не случайно наши глаза чувствительны к нему.

Как мы уже говорили, кванту требуется очень много времени, чтобы просочиться через плотное солнечное вещество наружу. Так что если бы «печка» внутри Солнца вдруг погасла, то мы узнали бы об этом только миллионы лет спустя. На своем пути через внутренние солнечные слои поток энергии встречает такую область, где непрозрачность газа сильно возрастает. Это конвективная зона Солнца. Здесь энергия передается уже не излучением, а конвекцией.

Что такое конвекция?

Когда жидкость кипит, она перемешивается. Так же может вести себя и газ. Огромные потоки горячего газа поднимаются вверх, где отдают свое тепло окружающей среде, а охлажденный солнечный газ спускается вниз. Похоже, что солнечное вещество кипит и перемешивается. Конвективная зона начинается примерно на расстоянии 0,7 радиуса от центра и простирается практически до самой видимой поверхности Солнца (фотосферы), где перенос основного потока энергии вновь становится лучистым. Однако по инерции сюда все же проникают горячие потоки из более глубоких, конвективных слоев. Хорошо известная наблюдателям картина грануляции на поверхности Солнца является видимым проявлением конвекции.

Конвективная зона Солнца

Радиоактивная зона около 2/3 внутреннего диаметра Солнца, а радиус составляет около 140 тыс.км. Удаляясь от центра, фотоны теряют свою энергию под влиянием столкновения. Такое явление называют – феномен конвекции. Это напоминает процесс, происходящий в кипящем чайнике: энергии, поступающей от нагревательного элемента, намного больше того количества, которое отводится тепло проводимостью. Горячая вода, находящаяся в близости от огня, поднимается, а более холодная опускается вниз. Этот процесс называются конвенция. Смысл конвекции в том, что более плотный газ распределяется по поверхности, охлаждается и снова идет к центру. Процесс перемешивания в конвективной зоне Солнца осуществляется непрерывно. Глядя в телескоп на поверхность Солнца, можно увидеть ее зернистую структуру – грануляции. Ощущение такое, что оно состоит из гранул! Это связано с конвекцией, происходящей под фотосферой.

Читайте также:  Защитная шторка от солнца лобового стекла

Фотосфера Солнца

Тонкий слой (400 км) – фотосфера Солнца, находится прямо за конвективной зоной и представляет собой видимую с Земли «настоящую солнечную поверхность». Впервые гранулы на фотосфере сфотографировал француз Янссен в 1885г. Среднестатистическая гранула имеет размер 1000 км, передвигается со скоростью 1км/сек и существует примерно 15 мин. Темные образования на фотосфере можно наблюдать в экваториальной части, а потом они сдвигаются. Сильнейшие магнитные поля, являются отличительно чертой таких пятен. А темный цвет получается вследствие более низкой температуры, относительно окружающей фотосферы.

Хромосфера Солнца

Хромосфера Солнца (цветная сфера) – плотный слой (10 000 км) солнечной атмосферы, который находится прямо за фотосферой. Хромосферу наблюдать достаточно проблематично, за счет ее близкого расположения к фотосфере. Лучше всего ее видно, когда Луна закрывает фотосферу, т.е. во время солнечных затмений.

Солнечные протуберанцы – это огромные выбросы водорода, напоминающие светящиеся длинные волокна. Протуберанцы поднимаются на огромные расстояние, достигающие диаметра Солнца (1.4 млм км), двигаются со скоростью около 300 км/сек, а температура при этом, достигает 10 000 градусов.

Солнечная корона

Солнечная корона – внешние и протяженные слои атмосферы Солнца, берущие начало над хромосферой. Длина солнечной короны является очень продолжительной и достигает значений в несколько диаметров Солнца. На вопрос где именно она заканчивается, ученые пока не получили однозначного ответа.

Состав солнечной короны – это разряженная, высоко ионизированная плазма. В ней содержатся тяжелые ионы, электроны с ядром из гелия и протоны. Температура короны достигает от 1 до 2ух млн градусов К, относительно поверхности Солнца.

Солнечный ветер – это непрерывное истечение вещества (плазмы) из внешней оболочки солнечной атмосферы. В его состав входят протоны, атомные ядра и электроны. Скорость солнечного ветра может меняться от 300 км/сек до 1500 км/сек, в соответствии с процессами, происходящими на Солнце. Солнечный ветер, распространяется по всей солнечной системе и, взаимодействуя с магнитным полем Земли, вызывает различный явления, одним из которых, является северное сияние.

Излучение Солнца

Солнце излучает свою энергию во всех длинах волн, но по-разному. Приблизительно 44% энергии излучения приходится на видимую часть спектра, а максимум соответствует желто-зеленому цвету. Около 48% энергии, теряемой Солнцем, уносят инфракрасные лучи ближнего и дальнего диапазона. На гамма-лучи, рентгеновское, ультрафиолетовое и радио излучение приходится лишь около 8%.

Видимая часть солнечного излучения при изучении с помощью спектроанализирующих приборов оказывается неоднородной – в спектре наблюдаются линии поглощения, впервые описанные Й.Фраунгофером в 1814 году. Эти линии возникают при поглощении фотонов определенных длин волн атомами различных химических элементах в верхних, относительно холодных, слоях атмосферы Солнца. Спектральный анализ позволяет получить информацию о составе Солнца, поскольку определенный набор спектральных линий исключительно точно характеризует химический элемент. Так, например, с помощью наблюдений спектра Солнца было предсказано открытие гелия, который на Земле был выделен позже.

Виды излучения

В ходе наблюдений ученые выяснили, что Солнце – мощный источник радиоизлучения. В межпланетное пространство проникают радиоволны, которые излучает хромосфера (сантиметровые волны) и корона (дециметровые и метровые волны). Радиоизлучение Солнца имеет две составляющие – постоянную и переменную (всплески, «шумовые бури»). Во время сильных солнечных вспышек радиоизлучение Солнца возрастает в тысячи и даже миллионы раз по сравнению с радиоизлучением спокойного Солнца. Это радиоизлучение имеет нетепловую природу.

Рентгеновские лучи исходят в основном от верхних слоев хромосферы и короны. Особенно сильным излучение бывает в годы максимума солнечной активности.

Солнце излучает не только свет, тепло и все другие виды электромагнитного излучения. Оно также является источником постоянного потока частиц – корпускул. Нейтрино, электроны, протоны, альфа-частицы, а также более тяжелые атомные ядра все вместе составляют корпускулярное излучение Солнца. Значительная часть этого излучения представляет собой более или менее непрерывное истечение плазмы – солнечный ветер, являющийся продолжением внешних слоев солнечной атмосферы – солнечной короны. На фоне этого постоянно дующего плазменного ветра отдельные области на Солнце являются источниками более направленных, усиленных, так называемых корпускулярных потоков. Скорее всего, они связаны с особыми областями солнечной короны – коронарными дырами, а также, возможно, с долгоживущими активными областями на Солнце. Наконец, с солнечными вспышками связанны наиболее мощные кратковременные потоки частиц, главным образом электронов и протонов. В результате наиболее мощных вспышек частицы могут приобретать скорости, составляющие заметную долю скорости света. Частицы с такими большими энергиями называются солнечными космическими лучами.

Солнечное корпускулярное излучение оказывает сильное влияние на Землю, и прежде всего на верхние слои ее атмосферы и магнитное поле, вызывая множество геофизических явлений. От вредного влияния излучения Солнца нас защищает магнитосфера и атмосфера Земли.

Интенсивность солнечного излучения

Имея крайне высокие температуры, Солнце является очень сильным источником излучения. Видимый диапазон солнечного излучения обладает наивысшей интенсивность излучения. При этом до Земли так же доходит большое количество невидимого спектра. Внутри Солнца протекают процессы, при которых из атомов водорода синтезируются атомы гелия. Это процессы называются процессами ядерного синтеза, они сопровождаются выделением огромного количества энергии. Эта энергия приводит к тому, что Солнце разогревается до температуры 15 миллионов градусов Цельсия (во внутренней его части).

На поверхности Солнца (фотосфере) температура достигает 5500 °С. На этой поверхности Солнце излучает энергию со значение 63 МВт/ м². До поверхности Земли доходит лишь немногая часть этого излучения, что позволяет комфортно существовать человечеству на нашей планете. Средняя интенсивность излучения на атмосферу Земли приблизительно равна 1367 Вт/м². Данное значение может колебаться в диапазоне 5% из-за того что, двигаясь по эллиптической орбите Земля отдаляется от Солнца на разное расстояние в течение года. Значение 1367 Вт/ м² называют солнечной постоянной.

Солнечная энергия на поверхности Земли

Атмосфера Земли не пропускает всю солнечную энергию. Поверхности Земли достигает не более 1000 Вт/м2. Часть энергии поглощается, часть отражается в слоях атмосферы и в облаках. Большое количество излучения рассеивается в слоях атмосферы, вследствие чего образуется рассеянное излучение (диффузное). На поверхности Земли тоже часть излучения отражается и превращается в рассеянное. Сумма рассеянного и прямого излучения называется суммарным солнечным излучением. Рассеянное излучение может составлять от 20 до 60%.

Читайте также:  Как только солнце позолотит верхушки деревьев

На количество энергии, поступающее к поверхности Земли, так же влияет географическая широта и время года. Ось нашей планеты, проходящая через полюса, наклонена на 23,5° относительно орбиты вращения вокруг Солнца. В период с марта

до сентября солнечный свет больше попадает на Северное полушарие, в остальное время – Южное. Поэтому продолжительность дня в летнее и зимнее время разная. Широта местности та влияет на продолжительность светового дня. Чем Севернее, тем длиннее в летнее время и наоборот.

Эволюция Солнца

Предполагается, что Солнце родилось в сжавшейся газопылевой туманности. Есть, по крайней мере, две теории относительно того, что дало толчок первоначальному сжатию туманности. Согласно одной из них предполагается, что один из спиральных рукавов нашей галактики проходил через нашу область пространства примерно 5 млрд. лет назад. Это могло вызвать легкое сжатие и привести к формированию центров тяготения в газо-пылевом облаке. Действительно, сейчас вдоль спиральных рукавов мы видим довольно большое количество молодых звезд и светящихся газовых облаков. Другая теория предполагает, что где-то недалеко (по масштабам Вселенной, конечно) взорвалась древняя массивная сверхновая звезда. Возникшая ударная волна могла быть достаточно сильной, чтобы инициировать звездообразование в «нашей» газо-пылевой туманности. В пользу этой теории говорит то, что ученые, изучая метеориты, обнаружили довольно много элементов, которые могли образоваться при взрыве сверхновой.

Далее, когда столь грандиозная масса (2*1030кг) сжималась под действием сил гравитации, она сама себя сильно разогрела внутренним давлением до температур, при которых в ее центре смогли начаться термоядерные реакции. В центральной части температура на Солнце равна 15000000K, а давление достигает сотни миллиардов атмосфер. Так зажглась новорожденная звезда (не путайте с новыми звездами).

В основном Солнце в начале своей жизни состояло из водорода. Именно водород в ходе термоядерных реакций превращается в гелий, при этом выделяется энергия, излучаемая Солнцем. Солнце принадлежит к типу звезд, называемых желтыми карликами. Оно – звезда главной последовательности и относится к спектральному классу G2. Масса одинокой звезды довольно однозначно определяет ее судьбу. За время жизни (

5 миллиардов лет), в центре нашего светила, где температура достаточно высока, сгорело около половины всего имеющегося там водорода. Примерно столько же, 5 миллиардов лет, Солнцу осталось жить в таком виде, к которому мы с вами привыкли.

После того, как в центре светила водород будет на исходе, Солнце увеличится в размерах, станет красным гигантом. Это сильнейшим образом скажется на Земле: повысится температура, океаны выкипят, жизнь станет невозможной. Затем, исчерпав «топливо» совсем и не имея более сил держать внешние слои красного гиганта, наша звезда закончит свою жизнь как белый карлик, порадовав неведомых нам внеземных астрономов будущего новой планетарной туманностью, форма которой может оказаться весьма причудливой благодаря влиянию планет.

Смерть Солнца по времени

  • Уже через 1,1 млрд. лет, светило увеличит свою яркость на 10 %, что повлечет сильное нагревание Земли.
  • Через 3,5 млрд. лет, яркость увеличиться на 40%. Начнут испаряться океаны и наступит конец всему живому на Земле.
  • По прошествии 5,4 млрд. лет, в ядре звезды закончится топливо – водород. Солнце начнет увеличиваться в размерах, за счет разрежения внешней оболочки и нагрева ядра.
  • Через 7,7 млрд. лет, наша звезда превратиться в красного гиганта, т.к. увеличиться в 200 раз из-за этого будет поглощена планета Меркурий.
  • В конце, через 7,9 млрд. лет, внешние слои звезды настолько разредятся, что распадаться на туманность, а в центре бывшего Солнца будет маленький объект – белый карлик. Так закончит существование наша Солнечная система. Все строительные элементы, оставшиеся после распада, не пропадут, они станут основой для зарождения новых звезд и планет.

Интересные факты о звездах

  1. Наиболее распространенными звездами во вселенной являются красные карлики. По большей части это происходит из-за их низкой массы, что позволяет им жить в течение очень долгого времени, прежде чем превратиться в белых карликов.
  2. Почти все звезды во вселенной имеют одинаковый химический состав и реакция ядерного синтеза происходит в каждой звезде и является практически идентичной, определяясь лишь запасом топлива.
  3. Как мы знаем как и белый карлик, нейтронные звезды являются одним из конечных процессов эволюции звёзд, во многом возникая после взрыва сверхновой. Ранее зачастую тяжело было отличить белого карлика от нейтронной звезды, сейчас же ученые с помощью телескопов нашли различия в них. Нейтронная звезда собирает вокруг себя больше света и это легко увидеть с помощью инфракрасных телескопов. Восьмое место среди интересных фактов о звездах.
  4. Благодаря своей невероятной массе, согласно общей теории относительности Эйнштейна, черная дыра на самом деле, это изгиб пространства, таким образом, что все в пределах их гравитационного поля выталкивается к нему. Гравитационное поле черной дыры настолько сильно, что даже свет не может избежать ее.
  5. На сколько мы знаем когда у звезды заканчивается топливо, звезда может вырастать в размерах более чем в 1000 раз, далее она превращается в белого карлика, а из-за скорости реакции взрываются. Эта реакция более известна как сверхновая. Ученые предполагают, что в связи с этим долгим процессом и образуются, столь загадочные черные дыры.
  6. Многие звезды которые мы наблюдаем в ночном небе, могут казаться одним проблеском света. Однако это не всегда так. Большинство звезд, которые мы видим в небе на самом деле две звездные системы, или бинарные звездные системы. Они просто невообразимо далеко и нам кажется, что мы видим лишь одно пятнышко света.
  7. Звезды которые имеют самую короткую продолжительность жизни, являются наиболее массивными. Они представляют собой высокую массу химических веществ и как правило сжигают свое топливо гораздо быстрее.
  8. Не смотря на то что нам иногда кажется что Солнце и звезды мерцают, на самом деле это не так. Эффект мерцания является лишь светом от звезды, который в это время проходит через атмосферу Земли но еще не достиг наших глаз. Третье место среди самых интересных фактов о звездах.
  9. Расстояния, участвующие в оценке того, насколько далеко до звезды невообразимо огромны огромны. Рассмотрим пример: До ближайшая до земли звезда находится на расстоянии примерно 4.2 световых года, и что бы добраться до нее, даже на самом быстром нашем корабле, потребуется около 70 000 лет.
  10. Самая холодная известная звезда, это коричневый карлик «CFBDSIR 1458+10B» имеющий температуру всего около 100 °C. Самая горячая известная звезда, это голубой сверх гигант, находящийся в млечном пути под названием «Дзета Кормы» ее температура более 42 000 °C.

Видео

Источник

Adblock
detector